COMPUTATIONAL TOOLSFOR GROUP THEORY

A Thesis
Presented to the
Faculty of

San Diego State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in

Computer Science

by
Jeffrey H. Barr

Spring 2005

SAN DIEGO STATE UNIVERSITY

The Undersigned Faculty Committee Approves the

Thesis of Jeffrey H. Barr:

Computational Tools for Group Theory

Carl Eckberg, Chair
Computer Science

William Root
Computer Science

Marcus Greferath
Mathematics and Statistics

Approval Date

Copyright © 2005
by
Jeffrey H. Barr

All Rights Reserved

DEDICATION

Thisthesisis dedicated to my family. | could not have accomplished this without the
support and love of Becca and Daniel.

ABSTRACT OF THE THESIS

Computational Tools for Group Theory
by
Jeffrey H. Barr
Master of Science in Computer Science
San Diego State University, 2005

This thesis describes the refinement and extension of code that was originally
developed as part of a1987 Math 797 project by David Gibbs, “ Computer Generation and
Identification of Groups of Order 2to 31.” The purpose of the code was to generate,
identify, and analyze groups presented in the form of a Cayley Table. Gibbs code was
transferred from Pascal to Java. Objects were created to improve the code design and allow
for better interaction between the generation, identification, analysis, and visualization
sections of code.

The code for this thesis allows cyclic groups to easily be generated, dong with groups
created via defined relationships and the cross product of multiple groups. A user interface
was added to the system to assist the user when utilizing the code as well as visualizing the
groups that are generated. Functionality to allow a user to manually enter a Cayley Table for
analysis was also added to the system.

The generation code is no longer limited to groups of order less than 31.

I mprovements were made to the identification code so that the system can identify all
Abelian groups including those created via the cross product of groups. Additionally, many
non-Abelian groups of order 32 were added to the list of groups which could be identified.

Analysis functionality was added including the identification of whether atable
actually represents agroup aswell asif the group is Abelian. Also, functionality was added
to calculate the inner automorphism group of the group being displayed. The analysis
functionality will provide users the ability to analyze groups that the code cannot yet identify.

Vi

TABLE OF CONTENTS

PAGE

N Y N o7 N O [PEEPRR Y

LIST OF TABLES ... oottt e e e e e et e e e e e e e e e s nbaan e e e e e e e e e nnnnnnes vii

LIST OF FIGURES.ottt a e e e e e e e e e e e e e e e e e nnnnnnnes IX

ACKNOWLEDGEMENTS ...ttt e e e e e e e e e e e e e e e e e s nnnnnnes X
CHAPTER

1 INTRODUGCTION ...oiiiiiiiiiiie it s s e e e e e e e s ssasaaa e e e e e s e e s ssnsssaeeeeeeeessnnnnnnnns 1

2 BASIC GROUP THEORYcoiiiiiiiiiiiiiiiie ettt e e e e e e e e s nnnanneeeaaaeaannns 3

3 FINITE ABELIAN GROUPS ...ttt e e e e 6

4 GENERATORSAND RELATIONS ...ttt 10

5 HISTORICAL BACKGROUND.......cciitiiiiiie ettt e s 14

Program geN_ZN.PESooiiuiiiiiiieee e e e s e 15

Program def_Fel.pas........ccuee e 15

Prograim CrOSS_[OF.D8Sccoiiuuiiiiieieeeeeeaiiire e e e e e e e e s e e e e e e e s ssnnr e e e e e e e e e e annnnees 17

Program ident_gP.PaS.ceeirereiieeeiiiee et ettt sn e snne e 18

6 USERINTERFACE..... .o ittt et a e e e e e s e e e e e e e e anas 21

Classes groupMainFrame and groupMaiN............ooceeeiieeeniieeenieeesiee e 22

Group Generation BULTONS..........cueriiiiriiiie e 22

Group ANalySIS BULLONS..........eeiiiiiiiiiie et 26

Class groupPane]oo i 28

Class groupTableMOdeloo i 29

7 CODE DESCRIPTION ...utiiiiiiiiiiiiiiiiieiis e e s ssiiiesee e e e e e e s sssssaeeeae e s e s sssnnssnneesaessesnnns 32

ClasS GrOUPMEBIITX ...ceeeeeeiiiieeeiieeesitee et ee st e st e st e e st e e s see e s nsee e e ssneeesnseeesnneeens 32

ClasS GrOUPCIEALONeeiiiieaiieeerieeeeeiteeestte st e e st e e st e e s seee e s ssee e s sneeeesnseeesnneeens 33

createCyclicGroup Method.............ooieiiiiiee e 34

createDefineRelationshipGroup Method...........coooveeiiiieininenee e 34

createX ProdGroup Method.............ooieiiiiie e 35

createl NNErAutGroup Method ... 35

Class groupldeNtITYoooiiieiie e 36

8 ADDITIONAL WORK ...ttt e e e e s e e e e e e e e e snraaneeeeeas 38
O FUTURE WORKcoiiiiiieiite sttt e e e e e e s s n e e e e e e e s s nnsnnaneaaaeas 41
APPENDICES ..ottt e s e e e e e e e s s e e e e e e e e s s nsaraeeaaeeeeeannnnrnes 45
A ALL GROUPS OF ORDER 2 TO 31 AND SOME GROUPS OF ORDER 32 45
o O | 5 PP EERPR 51
1Y = T = V7= PR R 52
(0101810 \Y =l o W = (V7= U PR USPSRTI 53

(0] (0 18] o]\Y =1 o W = (V7= U PR USPSRTIN 69
OFOUPPANE] JAVA. ... eeeeiiieieeiie ettt ettt ettt et e st e e snneeeanneeens 87
groupTabIEMOTE] JAVAL.........eeeieiieiiee e 90
OrOUPREIGLION. JAVA ...t sne e 93
(010101 oAV = D = Y- VPR OUSRPRRTIN 96

0] (0100 (= (0] g = Y- VPR USTR 104
OrOUPIAENTITY. JAVA ...eeeieeeeeeie et 114
OrOUPPEIMULELION.JAVAL ... veeeeeieeeieee et e sieee e sieee et e et e st e e snae e e snnee e snseeeenneas 129

PermutatioNGENEIatOr . JAVAcciueeeiiiee et e e e 132

viii

LIST OF TABLES

PAGE
Table 1. Cayley Tablefor Za A Za .o, 9
Table 2. Cayley TabI@ TOr D .oocuee et 13
Table 3. Number of Cayley Tablesfor Groups of Order < 6........cccceeeevciveeeeeiiieee e 39
Table 4. All Groups of Order 2 to 31 and Some Groups of Order 32........cccccceevieeeniieeennnen. 46

LIST OF FIGURES

PAGE
Figure 1. Cayley tableS fOr Zo. ..o..uei e 5
Figure 2. Sample view of the user interface including the group D4............ccccoeeeiiieiinnnnne 21
Figure 3. Cyclic input didlog DOX.cooiuiiiiiie e 23
Figure 4. Error message dialog DOX.c.eeeiiiiiiiiiie e 28

Figure 5. Tables of order 3 with identity fixed at element O............cccovevviiiiiiiienieeieeee 38

ACKNOWLEDGEMENTS

| would like to thank and acknowledge the contributions of the members of my thesis
committee: Dr. Carl Eckberg, Mr. William Root, and Dr. Marcus Greferath.

CHAPTER 1

INTRODUCTION

The purpose of this thesis was to refine and extend the capabilities of a 1987 Math
797 project by David Gibbs, “Computer Generation and Identification of Groups of Order 2
to 31.” The code was transferred from Pascal to Javain order to ease the addition of a user
interface that could be turned into an applet. The user interface was added to aid in
visualizing the groups as a Cayley table as well as to assist the user when utilizing the code to
generate and analyze groups. Also, Java enabled the ability to make the code object oriented
so that it could be easily extended and different objects could be used in other future
applications. The code to generate groups was made more flexible in order to enable
generation of groups with orders greater than 31 including defined relationship groups
utilizing more than four generators. Furthermore, the code can now identify all abelian
groups including those created via the cross product of groups, while many non-abelian
groups of order 32 were added to the list of non-abelian groups which could be identified.
Finally, additional functionality was added to the code in order to alow for further analysis
of groups that are entered into the system.

The code utilizes a groupMatrix object that contains a container class that holds the
actual group as an array of values similar to a Cayley table. In addition, the methodologies to
analyze the group are also contained in the groupMatrix class. Utilizing this single class
allowed the code to transfer an object that would contain the group from the generator object
(groupCreator) to both the user interface object (a JTable defined by an AbstractTableM odel
extension groupTableM odel) and the identifier object (groupldentify). Further discussion of
the code, as well as how to use the system, will be provided in the User Interface and Code

Description chapters.

2

According to Gibbs, there are 92 groups of order 2 to 31 through isomorphism. There
are an additional 51 groups of order 32, 44 of which are non-abelian.* Gibbs was able to
classify or identify all groups of order 2 to 31 up to isomorphism when the identity of the
group was element 0. However, Gibbs' code did not first determine if the Cayley Table that
was entered represented an actual group before attempting to identify the group. Further
description of Gibbs method of generating and identifying groups will occur in the History
chapter, while description of changes to Gibbs' methods is given in the Code Description
chapter.

Some of the additional functionality added to the code included the ability for a user
to enter a Cayley table, and functions to determine if atable was a group and if a group was
Abelian. Also, functionality was added to determine characteristics of a group including the
inner automorphisms of a group. How this new functionality works is described in the User

Interface and Code Description chapters.

! Marshall Hall, Jr and James K. Senior, The Groups of Order 2" (n<=6), (New Y ork: Macmillan, 1964),
2.

CHAPTER 2

BASIC GROUP THEORY

There are four characteristic properties that a nonempty set of elements G must have
in order to be group under a specific binary operation - (e.g. multiplication or addition):
1. Associativity. Forala b, cinG, (a- b)- c=a- (b ¢).
2. ldentity. Thereisanelement| | Gsuchthatad =l a=afordlal G.

3. Inverses. For each element ain G, thereisan element b in G (called an inverse of a)
such that ab=ba=1 .2

Finite groups are groups that have a finite number of elements. The number of elementsis
the order of the group and is labeled |G|, where G is the group. Each element g in agroup G
also has an order, |g|, equal to “the smallest positive integer n such that g" =1 ”.*> For a group
to be considered Abelian, all elements must commute with all other elementsin group; that
is, ab =baforal aandbinG.

A subgroup of agroup G isasubset of elements of G that form a group using the
same binary operation as G. Both the sets containing just the identity element | , and the
entire set of elementsin G are subgroups of G. A subgroup H is anormal subgroup of G if
all the elementsin G, commute with the subgroup or xH=Hx for al xI G, while the center of
G, Z(G), isthe set of all elementsin G that commute with all other elementsin Gor {al G|
ax=xafor every xI G}.* Note, the center of an Abelian group is the group because every
element commutes with all of the other elements.

A Cayley Table, or multiplication table, isamethod for displaying a group and the
result of operations on the elements. The table consists of n rows and columns, wherenis
the order of the group and each column and row represents an element. The first row and
column each represent the first element; the second row and column represent the second

2 Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 43.
% Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 58.

* Jimmie Gilbert and Linda Gilbert, Elements of Modern Algebra, 5th ed. (Pacific Grove, CA: Brooks
Cole, 2000), 122, 130, 178.

element, etc. Each cell in the Cayley Table represents one of the possible operations in the
group where the result of the binary operation (row element - column element) isin the cell.
Since the operations in agroup are closed, all cells are filled with elements of the group.
Also, since agroup is not necessarily commutative, the result of (row element - column

element) does not necessarily equal (column element - row element).

A group Gisacyclic group “if thereisan element ain G such that G :{a” [ni Z} 7o

Element ais called a generator of G and |a|=|G|. The group generated by ais<a>. The sets
of theform {0, 1, ..., n-1} are al cyclic groups under the binary operation addition modulus
n. These groups are usually written Z,, where n is also the order of the group. A group Z,
can have many generators, but they each form the same group. For example the group Zs has
two elements that are generators, element 1 and element 5, where element 5 utilizes addition
modulus 6 to create the set {0, 5, 4, 3, 2, 1} whichisidentical to the set created by element
one{0, 1, 2, 3,4,5}.

When there are two groups G and H which may or may not have the same binary
operation, afunctionf: G® H isahomomorphism from G to H such that f (ab) = f (a)f (b)
for dl aand b in G. When the homomorphism is one-to-one and onto, or bijective, the
homomorphism is called an isomorphism fromG ® H , G and H are said to be isomorphic.
In order to prove two groups G and H are isomorphic, there are four requirements: °

1. Mapping: thereisafunctionf fromG® H .

2. One-to-one: if f(a) =f(b), thena=Dh.

3. Onto: for any element hl H, thereisan element gl G such that f (g) = h.
4. Operation Preserving: f(ab) =f(a) f (b) for al a, bl G

The use of isomorphismsis useful in studying groups because groups that ook very
different can still be isomorphic, allowing them to be described by the same group. In fact
the two groups shown in the Cayley Tables in Figure 1 are both isomorphic to Z, and only
differ in their respective identity element.

® Jimmie Gilbert and Linda Gilbert, Elements of Modern Algebra, 5th ed. (Pacific Grove, CA: Brooks
Cole, 2000), 128.

® Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 120.

] 1 1 0
1 1] 1] 1

Figure 1. Cayley tablesfor Z..

An automorphism is an isomorphism of agroup G onto itself. The set of al
automorphisms of agroup G form agroup that isreferred toas Aut(G) ={f: G® G |f is
an isomorphism}. For some element ain group G, conjugation by a of element bl Gisa
mapping f «(b)=aba™. f . isa particular automorphism of G induced by a becauseit isa
mapping of G onto itself and has a special name, inner automorphism. The set of all inner
automorphisms of a group G form a group that is referred to as Inn(G) and is a normal
subgroup of Aut(G). Also, for any group G, Inn(G) € G/Z(G). Therefore, since the center of
an Abelian group isthe group, Inn(G) ={! } or Z; for an Abelian group G.”

" Charles Lanski, Concepts in Abstract Algebra, (Belmont, CA: Brooks Cole, 2005), 239-240.

CHAPTER 3

FINITE ABELIAN GROUPS

The groups that were identified in the code can be separated into two basics sections,
Abelian and non-Abelian groups. The code is able to use the order of the elements of the
group to identify the cyclic elements because if an element of a group is the order of the
group it must be the generator of the group and the group is cyclic. The other two
fundamental routines used to identify groups of order 2*p and p? are based upon the
uniqueness of the order of the groups and the fact that only a specific group, other than the
cyclic group, could be of that order. However, all of the groups identified by the cyclic, 2*p,
and p® methodologies could have been identified utilizing the remaining techniques.

The remaining groups were separated based upon whether they were Abelian. The
identification methods for the remaining Abelian groups utilize the Fundamental Theorem of
Finite Abelian Groups:

Every finite Abelian group is the direct product of cyclic groups of prime-power
order. Moreover, the number of termsin the product and the orders of the cyclic
groups are uniquely determined by the group.®

Note that this theorem includes the cyclic groups because the cyclic groups are dl finite
Abelian groups. In fact, the direct product of cyclic groupsisacyclic group if the orders of
the cyclic groups are relatively prime. Also, the direct product in this definition is the same
as the cross product used to generate groups in the code where A is used in this document to
represent the direct or cross product. A group of prime power order can be written Z," where
p is some prime taken to the power of n.

The power of the Fundamental Theorem is its application to the construction of all
Abelian groups of a specific order. Firstly, for all Abelian groups of the order p¥, there
would only be one group for each set of positive integers which sum k:

that is, if k can be written as

8 Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 211.

K=m+m+..+n
where each n; isa positive integer; then
z,Az,ALAZ,
is an Abelian group of order p*.°
Secondly, the unigeness portion of the Fundamental Theorem guarantees distinct

isomorphism classes such that Z4 A Zz isnot isomorphicto Z, A Z, A Zs even though both
groups are of order 12. Thisleads to the next observation that the number of isomorphisms
of Abelian groups s directly related to the prime factorization of the order of the group.
Thus, through the determination of the prime factorization of the order of a group, the
number of Abelian groups of that order can be determined. For example, the prime
factorization of 24 is 2° * 3 and these numbers can only be combined in three methods,
while the prime-power order requirement is maintained and the total value of the

combination equals 24. Thus, the only possible Abelian groups of order 24 are Z, A Z,,
z,Az,Az,,and Z,AZ,A Z, A Z,. Notethat since 24 isaproduct of two primes, 24 is
not a prime-power order, so one of the three identified Abelian groups (Z, A Z,) must be
isomorphic to the cyclic group Z,4. This also shows how groups of much higher order still
have a limited number of Abelian groups. For example, the prime factorization of 120 is 2° *
3" * 5" which can only be combined in three methods, similar to groups of order 24.
Therefore, the three Abelian groups of order 120 arez, Az, A z,, z,AZ,AZ. A Z,, and
zZ,ARZ,AZ,Az,AzZ,.

The fact that Z,4 isisomorphic to Zg A Z3 leads to the ability to combine cyclic
factorsif they arerelatively prime. To combine the cyclic factorsin alogical manner,
“obtain adirect product of theform z, Az, ALAZ_ , wheren dividesn.”*® Therefore,
instead of combining Z,A z,A zZ, A Z, into Z,, A Z,, it would be described as Z, A Z,

since 4 does not divide 30 but 2 divides 60. Nevertheless, these three groupsthat are

® Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 212.
10 Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 215.

generated through the direct product of different cyclic groups are still isomorphic. The
combining and naming notation are for ease of use only.

The order of an element in a group can at most be the maximum order of the group;
however, we know for any element ain agroup G, <a> is a subgroup of G, where <a> isthe
set {d' | nisaninteger} and the order of a, |a], in G isalso the order of ain <a>. Therefore,

the order of any cyclic group Zx inthegroup Z, A Z, ALLA Z, isk sincethe order of any

cyclic group Zy is k and the maximum order of any element is the order of the group Zx in the
direct product with the highest order since the cyclic groups are all subgroups of the original
group. Using this knowledge, the Fundamental Theorem can be converted into an algorithm
to identify the cyclic elements that compose the direct product used to generate the group.

The Greedy Algorithm for an Abelian Group of order p" shown below is an algorithm
that utilizes the Fundamental Theorem to identify the factors used in the direct product for
the group. Thisisvery similar to the methodology used in the code to identify each of the
factors that comprise the Abelian groups in the identification of remaining Abelian groups
section of code. The steps of the algorithm are: *

1

Thelist of Gi, wherei goesfrom 1 to k, isthelist of the k cyclic groups that comprise the
direct product used to generate the Abelian group G.

An example of the calculation of the direct product for Z, A Z, is shown to further

display how the groups and more specifically the Cayley Table created in the code is
generated. The elementsof Z, are{0, 1, 2, 3}, while the elements of Z, are {0, 1}. The
element O is the identity element for both groups. In the direct product, these two groups
combine their elements to form the new elements, { (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1),
(3,0, (3, 1)} where the element (0, 0) isthe new identity element. The operation used to
combine the elementsin Z, and Z; is maintained so we can use the Cayley tables for each
group to determine the combinations. Thus, if element (1,0) is to be combined with element
(3,1), we would use the Cayley Table for Z, to combine 1 and 3, while we would use the
Cayley Table for Z, to combine 0 and 1 in order to find element (0, 1). Each of the new

11 Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 214-
215.

elements of the group Z, A Z,, can be transformed into a single number creating an

isomorphism of the original group that was generated through the direct product of the two
groups Thus, the new set of elements becomes{0, 1, 2, 3,4, 5, 6, 7} with aone-one

correspondence with the original elements. The Cayley Tablefor Z, A Z, with the direct

product elementsis shown in Table 1.

Table 1. Cayley Tablefor Z, A Z,

0,0 0, 1) (1,0 1,1 (2,0 (2, 1) (3,0 3,1

0, 0) (0, 0) 0, 1) (1,0 1,1 (2,0 (2, 1) (3,0 3,1

0, 1) 0, 1) 0,0 1,1 (1,0 (2, 1) (2,0 3,1 (3,0

(1,0 (1,0 1,1 (2,0 (2,1 (3,0 3,1 0,0 0, 1)

1,1 1,1 (1,0 (2, 1) (2,0 3,1 (3,0 0, 1) 0,0

(2,0 (2,0 (2, 1) (3,0 3,1 0,0 0, 1) (1,0 1,1

(2, 1) (2, 1) (2,0 3,1 (3,0 0, 1) 0,0 1,1 (1,0

(3,0) (3,0) 3,1 0,0 0, 1) (1,0 1,1 (2,0 (2, 1)

3,1 3,1 (3,0 0, 1) 0,0 1,1 (1,0 (2, 1) (2,0

Thelist of all Abelian groups of order less than or equal to 32 isincluded in the list of
all groups of order lessthan 32 Table 4 in Appendix A.

10

CHAPTER 4

GENERATORSAND RELATIONS

A group can also be created through the use of generators and relations. Generators
are the set of elements that are used in “a set of equations (called relations) that specify the
conditions that these generators are to satisfy.”** The set of elements are defined as the
generators of agroup G if “every element of G is expressible as afinite product of their
powers.”*® While the relations could include how any combination of the generators equal
other combinations, usual relations show the minimum number of equations needed in order
to derive every other relation between the generators. One of the more interesting aspects of
generators and relationsis that given a set of relations, any set of generators used that satisfy
only the given relations will form a group isomorphic to any other set of generators that use
those same relations.

Generators and relations are capable of creating all groups, including Abelian and
non-Abelian. The generators and relations have no indication which is being created, only
the differences between the relations identify the differencesin the groups. For example,
both the groups D4 and Z4 A Z, utilize two generators and are order 8. However, the groups
are distinctly different including the fact that D4 is non-Abelian, while Z4 A Z, is Abelian.
The generators and relations for each group of order 8 are:

Zg: @ =1 (identity element)

Zy A Zy a'=b"=1 andba=ab

ZoA Z, A Zy &@=b"=c*=1,ba=ab,ca=ac, andcb=bc

D4 &' =b?=(ab)* =

Quaternion: a*=(ab)>=1 and b® = &

12 Joseph Gallian, Contemporary Abstract Algebra, 5" ed. (New Y ork: Houghton Mifflin Co., 2001), 433.

¥ H.S.M. Coxeter and W.0.J. Moser, Generators and Relations for Discrete Groups, 4" ed. (New York:
Springer-Verlag, 1980), 1.

11

Notethat inD4 and Z, A Z,, element ais order 4, while element b is order 2. The
only red differencein the relationsisthat whileba=abinZ4 A Z,, ba=aaabin Da.
However, the differences between the two relations cause significant differences in the
groups.

The use of generators and relations was particularly useful in generating the non-
Abelian groups that are can be identified in the code. In particular, specific classification of
groups with similar relations could be identified as classified based upon the relations
between the generators. For example, dihedral groups of the form D are of the order 2q and
have the relations a® = b® = (ab)® = | with elementsaand b of the cyclic groups Z, and Z»,
respectively, are the generators. What is actually occurring is that Zq has an automorphism
of order 2 that “transforms every element into itsinverse.”** Thus, adjoining the group Z,
with an element b of period 2, the cyclic group Z, is transformed into the dihedral group Dq
defined by the equation b™ab = a™* which is equivalent to the relation (ab)® = | given above.

Another convenient classification group is the dicyclic groups. These are identified
asthe groups of the form <2, 2, m>, where the order of the group is4m. Instead of the
relations given by the dihedral group, the relations are dlightly changed. Thisrelationship is
also based upon the same automorphism that transformed the element a® a* from acyclic
group of the form Z,,. However, instead of adjoining the group with an element of period 2,
an element b of period 4 isused.”® Thus, for the group <2, 2, m>, while the equation of the
mapping is still b*ab = a*, or (ab)®> =1 , the adjoining element is now of period 4 and instead
of b’=l , b*=l . However, sinceb*=l , and by definition of Zam, &™=1 , the square of b now
equals d", or b?=d". Therefore, the relationships for the groups of the form <2, 2, m> areb

These groups lead to a more generalized relationship that provides an identification

scheme for many of the non-Abelian groups of order lessthan 32. The relationship

S"=T"=e, T'ST =S’ provides ameans to generate the groups:*

“H.SM. Coxeter and W.0.J. Moser, Generators and Relations for Discrete Groups, 4" ed. (New York:
Springer-Verlag, 1980), 6.

> H.S.M. Coxeter and W.0.J. Moser, Generators and Relations for Discrete Groups, 4" ed. (New York:
Springer-Verlag, 1980), 7-8.

16 H.S.M. Coxeter and W.0.J. Moser, Generators and Relations for Discrete Groups, 4" ed. (New York:
Springer-Verlag, 1980), 11.

12

Znm A Z, whenr =1

Zon whenr =-1, m=2, and nisodd
Dm A Zu2 whenr = -1, and n/2 is odd

<2, 2, m> whenr= -1, n=4,and misodd

Z, A<2,2,m/2> whenr= -1,n=4, and m/2isodd
Also, notice in the equation Dy A Zy2, when n=2 the equation gives the dihedral group D,
since Z; isthe identity and the relations become S™ =T? =/, T"'ST =S ! whichis
equivalentto S"=T?=(ST)*=1 .

An example of the generation of the group D, is shown to further display how the
groups and more specifically the Cayley Table created in the code is generated. The relations
for Dyarea’ = b? =1, ba=a’b, where a* and b” represent the generators used along with their
orders and inverses, while ba=a’b is the “pseudo” commuitative relationship used be the code
. Starting with the group Z, generated by element a, the element b, which has a period of 2,
isadjoined to Z4. Therefore, the elements of the group D4 are{l , a, aa, aaa, b, ab, aab,
aaab}. Therelations are then used to reorder the elements when an operation between two
elements results in a combination that is not one of the elements of the group. For example if
aab is combined with ab, the result is aabab. This new result can then be transformed
utilizing the defined relationships whereby aabab=aaa*bb because ba=a’b, aaa*bb =abb
because aa'=a"=l , and abb=a because b’=| so the final result of the combination
aab- ab=a. Thefina Cayley Table for D, is shown in Table 2 along with the relationships
used to derive the final table.

13
Table 2. Cayley Tablefor Dy

I a aa aaa b ab aab aaab
I | a aa aaa b ab aab aaab
adaa =
a a aa aaa - ab aab aaab b
aaaa aaaaa = | aaaaab =
aa aa aaa aab aaab
= =a b ab
aaaa, aaaaa, aa222a = | aoaaab | aasaaaab
aaa aaa aaab
=] =a = aaa b = =
ba= baa = baaa = bab = baab = | baaab =
b b bb =
aaab aab ab aaa aa a
abaa= | abasa= abab = | abaab = | abaaab =
ab ab aba=b abb=a
aaab aab I aaa aa
aaba= | asbea= | adbasa | asbb= | aabab= | aabaab | aabaaab
aab aab
ab b = aa a = = aaa
aaaba= | asaba= | asabasa | aaabb = | aaabab | aaabaab | asabaaab
aaab aaab
aab ab = aaa = a -a =

All the groups of order less than or equal to 32 along with many of their generators
and relations are shown in Table 4 in Appendix A.

14

CHAPTERS

HISTORICAL BACKGROUND

David Gibbs', “Computer Generation and Identification of Groups of Order 2 to 31"
goal was to generate and identify all 92 groups through order 31 including the 45 non-abelian
groups.”” The code was originally written in Pascal in four distinct code pieces that ran
independently. Three of the sections dealt with generating different types of groups, while
the remaining section was for identifying the groups. Generated groups were stored as files
that could be read by the identification code. No user interface was available except for
command line instructions. All information for this chapter was taken from Gibbs' paper
except where otherwise noted.

Gibbs was able to identify al groups of order 2 to 31 up to isomorphism when the
identity of the group was element 0. By forcing element O to be the identity element, Gibbs
a so reduced the number of possible isomorphisms by alarge amount. Since Gibbs' code did
not determine if the table being identified actually represented a group, the user would have
to ensure the table represented a group with element 0 as the identity before running the
code.

There were three distinct sections of code that were created by Gibbs in order to
generate the different groups. He separated the group generation into cyclic groups, groups
formed by defined relationships, and cross product groups. Each of the generator programs
created text files that contained the group or groups created. Each group in the text file
consisted of single line that contained the order of the group and a comment field followed
by n lines which contained n space delimited numbers. This nxn table represented Cayley
Table for the group that was generated. These text files, along with files of similar structure,
were then used as input to the identification program. Gibbs was able to identify generators

for all of the groups of order less than 32.

" David Gibbs, “Computer Generation and |dentification of Groups of Order 2 to 31” (unpublished Math
797 Project, San Diego State University, 1984), 4-9.

15

PROGRAM GEN_ZN.PAS

Cyclic groups are groups that can be generated by asingle element. Gibbs utilized
modulus arithmetic to generate an example of the cyclic groups by adding the row and
column for a particular cell in the Cayley Table and taking the modulus of the result with
respect to the order of the group to be generated. Thus, for group Z, the result in row 4,
column 5 would be (4+5) mod 7 or element 2. Gibbs' program gen_zn.pas automatically
created all 30 cyclic groups of order 2 to 31 when run. All 30 groups were stored in asingle
text file starting with group Z, through group Zs1, with each Cayley Table labeled with its
order n and name Z,,.

Each cell could be calculated independently by utilizing the row and column numbers
of the cell. Therefore, by looping through each row and column the entire Cayley Table
could be generated in two for loops. Each cell could then be calculated with one addition
operation and one division, yielding f(n) = 2n? operations. Therefore, the generation of
Cayley Tables for cyclic groups ran in O(n?) time.

PROGRAM DEF_REL.PAS

Groups formed by defined relationships were created utilizing two to four generators
(letters) that are combined based upon the order of the generators as well as what Gibbs
called “pseudo” commutative substitution instances. Defining relationships were
documented by Gibbs for 34 of the 45 non-abelian groups of order lessthan 32. The
remaining 11 relationships were generated utilizing the cross product code. The order of the
generator defined the maximum number of elements of that generator as well as the inverse
element of the generator. The *pseudo” commutative substitution instances defined how the
generators combined so that they could always be placed in the same order as well as any
other relations between the generators. For example, if there were two generators, “a” and
“b”, a“pseudo” commutative substitution instance would be required to determine how to
switch the order of the generators. Therefore, a combination of the generators, “ba’, would
have a substitution where the “a’ generator wasfirst. This combination of generator
characteristics and “ pseudo” commutative substitution instances are combined into a
substitution list.

16

...the elements of the set were created by appending all possible ordered
combinations of letters and stored in the array elt_list. Then, the group tableis
built, each element being formed by the concatenation with another element in the
table. The resulting string is then examined against the substitution list for
possible simplifications, and this process continues until the string is reduced to
an element in the set (i.e. onein the array elt_list). It isthen replaced by the
corresponding integer subscript of the array elt_list, and the resulting group table
once again consists of integers.'®

Gibbs' def rel.pas program used a command line entry system for its user interface.
On startup, the program will first requests the user enters two file names, one for the Cayley
Table to be stored in the same format as in the cyclic tables and the second for the defining
relationships to be used to form each group. The program would then request the user to
enter the order of the group that the user wished to create along with a name to be stored in
the comment field. The program would then request the number of generators, assuming a
number between 2 and 4 was entered. No error checking was used throughout the program
in order to determine if the user entered alegal value. The order of each of the 2to 4
generators, labeled a, b, ¢, and d, was then requested. The program would then request any
relationships which were not pseudo-commuitative that were used for substitution
relationships. These would be relations of the form bb=aa, as used by the Quaternion group
for replacing instances of bb in an evaluation of some combination of two elements with aa
The user would enter the left side of the equation and then the right at separate prompts using
the value 1 for the identity element. The user would then enter the right side of the equation
for apredefined list of “pseudo” commutative relationships. These would be relationships of
the form ba=a"b*c’d*, where the left hand side represents all possible 2-element
combinations of the generators used in reverse aphabetical. The valuesfor w, X, y, and z
actually represent the number of a's, b’s, ¢’'s, and d’s used in the equation. Therefore, the
“pseudo” commutative relationship for the group Dg which only has two generators would be
ba=aaab. Also, since Gibbs' code understood the inverse to be the capitalization of the letter
representing the generator, the “pseudo” commutative relationship for the group Dg could
also be represented as ba=Ab. If there were three generators, an additional two “pseudo”
commuitative relationships were needed for caand cb, while four generators would require

'8 David Gibbs, “Computer Generation and |dentification of Groups of Order 2 to 31” (unpublished Math
797 Project, San Diego State University, 1984), 12.

17

even more relationships for da, db, and dc. The program will then list al of the relationships
it isto use for generating the new group for the user to approve. If the user does not approve
of the relationships, al data must be reentered. If the defined relationships were approved
the program would store the relationships along with the order and comment field in a text
file and then generate the group. Once the group was generated, it would be stored in the
same format as the cyclic group with the order and comment field on one line followed by
the Cayley Table on n lines, where n is the order of the group. The user can then exit the
program or begin again and generate a new group to be stored in the samefile.

According to Gibbs, the creation of the final element list would require at most 4n
string concatenations and n array assignments. To combine each of the elementsin the
Cayley Table takes n’ concatenations, one for each cell in the grid. In order to simplify a
single element generated via the concatenations would require, in the worst case, substitions
on the order of O(hm) where m is the number of generators. Since substitutions would
checked on all cells generated, the generation of defined relationships would run in O(n*).*°

PROGRAM CROSS_PR.PAS

Cross product groups were formed by taking two groups and forming a new group
based upon the combination of elements from both groups. The cross product code was used
to create the remaining 28 groups, 17 abelian and 11 non-abelian. All of the groups used in
the cross products are generated by either the cyclic method or the defined relationship
method. For two groups of size n and m, the order for the corresponding cross product group
would be n*m. Each element in the new group would initialy be represented as a
combination pair (e.g. (0,0), (0,2), ..., (O,m-1), (1, 0), ..., (1, m-1), ..., (n-1,0), (n-1,1), ...,
(n-1,m-1) that is later mapped to it’s corresponding position in the array within which the
pairs are stored. The cellsin the Cayley table are calculated by utilizing the row and column
values along with the array of pairs to determine positions in the original group tablesthat are
then used to calculate new pairs whose position in the array is used as the cell value. For
example, when calculating Z2 x Z4, the elements 0 to 7 in the coordinate array would be
(0,0, (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), and (1,3). To calculate the value of the cell (2,7)

¥ David Gibbs, “Computer Generation and | dentification of Groups of Order 2 to 31” (unpublished Math
797 Project, San Diego State University, 1984), 11-12.

18

we would use elements 2 and 7, (0,2) and (1,3) respectively. The new cell would use the
value of cells (0,1) from the Z2 table and the value of cell (2,3) from the Z4 tableto givea
new coordinate pair of (1,1) which iselement 5 inthe array. Therefore, cell (2,7) in the
Cayley table for Z2 x Z4 would equal 5.

Gibbs' cross pr.pas program would only generate the cross product of two groups. In
order to generate cross products of more than two groups, the program had to be run multiple
times to alow the results of one cross product to be combined with another group in order to
build larger order cross product groups. The program would request, via the command line,
the user enter the name of two files, each containing one group in the format that was
previously described. The program would then use these two groups to generate a cross
product, while calculating the order of the new group by determining the elements of the new
group. This new group would be stored in the same format as the cyclic and defined
relationship groups in afile named output.dat. The comment for the new group would
consist of the comment from the first group, an x, and the comment from the second group.
The program would then inquire whether the user wanted to create another cross product
group or exit the program.

In order to load the two groups into memory, the program takes n? and n,” operations
where n; and n, are the order of the two groups and the order of the cross product group is
n=n*ny. It takes 2n operations to generate the cross product combination pairs. It then
requires 2n’ operations to create the Cayley Table because each element in a pair has to be
separately calculated. Finally, once each combination pair is generated, an additional
maximum n operations are required to associate the combination pair with its array position.
Thus, atotal worst case has the program running in O(n?) time.”

PROGRAM IDENT_GP.PAS
The program that was used for identifying a group, ident_gp.pas, requested from the
user the name of atext file that was in the form used by the generator programs. It would
then request the user decide if output would be sent to the screen or afile name the user
chose. The program would then read the first group stored in the file, output the order and

% David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31" (unpublished Math
797 Project, San Diego State University, 1984), 10-11.

19

comment on the first line of the input file to the screen or output file and store the Cayley
Tablein a 128x128 integer array, severely wasting space. After identifying the group, the
program would also output the name of the group to the screen or output file. If theinput file
was not empty, and contained another group, the program would then repeat the process.

The code goes through a specific five step process for identification after first
calculating the number of elements of each order. No effort is made to determine if the
Cayley Table actually represents a group before the identification process begins.

1. The code checksif the groups are cyclic by determining if the order of any of the
elements in the group equals the order of the group. There are atota of 30 cyclic
groups for groups of orders 2 to 31, one for each order.

2. The code then determinesiif the order of the group is of the form 2*p, where pis
prime (e.g. group order is 6 where p=3). If the group order is of the form 2*p, the
group is either cyclic which was determined in step 1, isthe Klein-4 group if order 4,
or one of the prime number dihedral groups (D3, D5, D7, D11, or D13) that have
order less than 32. The specific group is determined by the value of p.

3. The code then determines if the order of the group is of the form p?, where p is prime
(e.g. group order is 25 where p=5). If the group order is of the form p?, the group is
either cyclic which was determined in step 1, or a cross product of the cyclic groups
of order p. The only two groups with order less than 32 that this would include are
Z3xZ3 (order 9) and Z5xZ5 (order 25) and the specific group is determined by the
value of p.

4. The code then determines if the group is abelian by determining if all elementsin the
group commute. If the group is abelian, the code calculates the cross product group
by first determining the highest order element of the group and using that value as the
order of thefirst cyclic group in the cross product. The value is aso divided into the
total order of the group giving aremaining value of the group that is the factored into
its prime factorization. This prime factorization is used along with the number of
elements of the respective prime value to determine the number and value of the
remaining cyclic groupsin the cross product. Thus, if the prime factorization yields
p*, and there are n elements of order p in the group, the number of factors necessary
to equal p* and be used in the cross product islog, (n+1) — 1. There are atotal of 14
remaining abelian cross product groups with order less than 32 that can be determined
by this method.

5. Theremaining groups that have not been identified are the non-abelian groups other
than the dihedral groups of the form Dy, where p is prime identified in step 2. In all
but two exceptions, the order of the elements of the group is used to uniquely identify
the group. These groups are separated by group order then by the order of the
elements of the group utilizing a case statement. The two exceptions are for two pairs
of groups of order 16. Each pair of groups has the exact same order structure for the
elements in each group. In order to differentiate each group, one pair can be
differentiated by determining which group has the Klein-4 group as its center, while

20

the second pair can be differentiated by determining which group has a non-normal
cyclic subgroup. There are atotal of 40 additional non-abelian groups that are
identified with this method.

The determination of the number of elements of each order is done in 2n time. Once the
order of the elements is established, the determination of whether a group is cyclic can be
donein ntime. The code to check for whether the order is 2*p or p?is Jn, while
determination of whether a group is Abelian isn?. The identification of an Abelian group
occurs in 3n operations, while the identification of the non-Abelian group is about n+n?+2n°
operations. However, only the differentiation of the non-abelian groups Z, A Quaternion and
Z4 X0 Z4 based upon determination of the normality of their subgroups requires 2n°
operations. All other non-abelian groups are also found in about n+n? operations. Therefore,
the entire identification process runsin:

f(n) = 2n? + n + 2*sgrt(n) + n + 3n: O(n) for Abelian groups
f(n) = 2n? + n + 2*sgrt(n) + n? + n + 2n%: O(n®) for non-Abelian groups.

% David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31" (unpublished Math
797 Project, San Diego State University, 1984), 19-20.

CHAPTER 6

USER INTERFACE

21

The user interface was added to aid in visualizing the groups as a Cayley table as well

asto assist the user when utilizing the code to generate and analyze groups. The user
interface consists of amain panel that contains a series of buttons, labels, and a secondary
panel that contains a table representing the group as a Cayley table. The interface was

developed utilizing Java Swing components. A view of the interface is shown in Figure 2.

o || = o

Il =lra[oo

[N R = N =R A oY

Fafw || ==

| E-ramolw|m
oo =]ra]~

BRI

=N N R R =T

(]

| »

The table is not an Abeliain Group because it is not communative

ICheck Group Properties:
Check if Group Check if Abelian | Find Group Hame | Find Inner Automorphism
Choose Type of Group to Enter:
Cyclic Group | Cross Product Group | User Defined Group | Defined Relationship Group

Figure 2. Sample view of the user interface including the group D4

22

CLASSES GROUPM AINFRAME AND GROUPM AIN

Two separate main panels were created depending on the desired use of the software.
A main extended JFrame, groupMainFrame, for use as a standalone utility and an extended
JApplet, groupMain, for use as an applet as part of a website which are identical were both
created. A section of JButtons is on each main panel, each of which has a method associated
with it when the JButton’ s action listener is activated. There are two hidden JLabels that are
only shown when in use in addition to the two labels describing the button sections. A
secondary extended JPanel named groupPanel is an added component to groupMainFrame
and groupMain. This extended JPanel contains the view of the actual Cayley table utilizing a
JTable and the instance of groupPanel in the main frame or applet is called myGroup.

In addition to the Swing objects there are also additional objects that are used to
create and identify the groups being displayed in the user interface. A groupCreator object,
myCreator, contains methods to generate the groups and stores the group once it is generated.
A groupldentify object, groupNamer, contains the methods used to identify the groups on
display and stores the name of the group once it isidentified. Both of these classes use a
common class called groupMatrix in order to store the group being generated, displayed, and
identified. More detail on these objects can be found in the Code Description chapter.

Group Generation Buttons

The user interface has eight buttons that are JButton components. Four of the buttons
are utilized to generate groups, while the other four buttons are used to analyze the groups
that have been generated. Three of the group generation buttons are associated with actions
that directly interface with code that is based upon the original Gibbs group generation code.
Thisis code that is used to create the cyclic, defined relationship, and cross product groups.
The methods that are called have functionality directly related to user interaction, such as
requesting the order of the group to be generated, the number of groups to be used in the
defined relationship or cross product, or the actual relationships between the groups. This
dataisinput viainput dialog boxes, while error messages questioning the input from the user
is displayed in message dialog boxes. The limitations that Gibbs had in his software,

23

including the size and number of groups the user can use in generating new groups has been
eliminated. The methods than call methods in the groupCreator object that directly generate,
and store the groups, methods in the groupl dentify object to identify the groups, and methods
in the groupPanel object to update the display of the groups. The generation, storage, and
identification classes will be discussed in the next chapter, Code Description. The fina
group generation button is associated with a method that allows the user to directly input a
Cayley table in the user interface.

The “Cyclic Group” JButton, btnZnGroup, is associated with a Java ActionListener
that determines when the button is pressed and calls the method createZnGroup which isa
method in the main panel. The method will then call the method createNextCyclicGroup
which returns a boolean that signals successful generation of acyclic group. The method
createNextCyclicGroup opens a JOptionPane Input Dialog box, shown in Figure 3, that

requests the user enter the order of the cyclic group to generate.

Cyclic Group Dialog E]
- Enter the order for the Cyclic Group.
| |

OK Cancel

Figure 3. Cyclic input dialog box.

Error checking is done to ensure the user enters an integer. Unlike Gibbs, any order
cyclic group can be generated. |If an integer greater than O is entered, the method in
groupCreator used to generate a cyclic group (createCyclicGroup) is called and the group
generated is stored in the groupCreator object. If createNextCyclicGroup is ever
unsuccessful, a JOptionPane message dialog box is displayed with the error that occurred and
then the method returns failure to the method that called it. Upon successful creation of a
group the createZnGroup method will update the groupMatrix object stored in myGroup and
then call the findGroupName method that is discussed later in this chapter.

The “Defined Relationship Group” JButton, btnDefRelnGroup, is associated with a
Java ActionListener that determines when the button is pressed and calls the method
createDefinedRel ationshipGroup which is a method in the main panel. The method opens a

24

JOptionPane Input Dialog box requesting the user enter the number of generators to use.
Error checking is done to ensure an integer greater than or equal to two is entered. If thereis
an error at this point, the method returns without creating the new group. Unlike Gibbs,
more than four generators can be used. The method will then request the order of each of the
generators utilizing error checking to ensure an integer greater than O is added. If an error
occurs, the system will continue to ask for alegal value until one is entered.

Each of these ordersis added to an ArrayList containing the orders of each of the
generators of the group and a groupRelation object isinstantiated. An ArrayList isaJava
collection class similar to an array that also allows the code to dynamically alocate space as
more objects are added to the collection. A groupRelation object is a special object that
contains two strings, left and right, which represent a relationship used in the generation of a
defined relationship group. The groupRelation for each generator contains the generator
repeated the order of the generator times for the left string and an empty string for the right
string. For example the left string for a generator of order 3 would be “000” if it was the first
generator, while the right string would be “”. Each string can be retrieved separately for the
groupRelation. Each groupRelation object is stored in an ArrayList called
definedRelationships. A better description of the groupRelation object is given in the Code
Description Chapter.

The method createDefinedRel ationshi pGroup than requests the user answer whether
they have any additional relationships to add which were not pseudo-commutative that were
used for substitution relationships. These would be relations of the form bb=aa, as used by
the Quaternion group for replacing instances of bb in an evaluation of some combination of
two elements with aa. All letter combinations are immediately converted to their
corresponding number combinations, where a=0, b=1, etc. If the user enters “yes’, the
method would request the user enter arelationship in the form left=right, where “left” and
“right” represent lists of generators. This relationship would be stored in another
groupRelation object. If the left string already equals the same as a previously generated
relation stored in the definedRelationships ArrayList, the right string is replaced. For
example, the Quaternion group’ s second generator is order 2 giving the relationship 11 =*";
however, the relationship bb=aa, would replace the relationship previously created for the
order of the second generator so that the new relationship would be 11=00. If the left string

25

has not been used in a previous relation, the new groupRelation is added to the
definedRelationship ArrayList. The user is alowed to enter as many special relationships as
desired. After the substitution relationships have been entered, the method than calls the
getNextRelatioship method for each *pseudo” commutative relationship to be added to the
definedRelationship ArrayList. The getNextRelationship requests the “pseudo” commutative
relationship for a defined left string (e.g. ba, ca, cb, etc.) and then performs error checking to
ensure the order of the generators used in the relationship is aphabetical. Thiswas because
the elements of the defined relationship group always would aways have the generators in
alphabetical order. Therefore, a groupRelation whose right string that looked like “aba”,
would not be able to create an element where the a generators never followed the b
generators. Once all of the “pseudo” commutative relationships were defined the method in
groupCreator used to generate a defined relationship group (createDefineRel ationshipGroup)
is called and the group generated is stored in the groupCreator object. Upon successful
creation of agroup, the createDefinedRel ationshipGroup method will update the
groupMatrix object stored in myGroup and then call the findGroupName method that is
discussed later in this chapter.

The “Cross Product Group” JButton, btnXProdGroup, is associated with a Java
ActionListener that determines when the button is pressed and calls the method
createX ProdGroup which is a method in the main panel. The method opens a JOptionPane
Input Dialog box requesting the user enter the number of groupsin the cross product. Error
checking is done to ensure an integer greater than or equal to two is entered. If thereisan
error at this point, the method returns without creating the new group. Unlike Gibbs, more
than two groups can be used to create the group. The user isthen asked to enter 1 if the next
group in the cross product isacyclic group and a 2 if the next group is a defined relationship
group. If alisentered, the method calls createNextCyclicGroup described above, while if a
2 is entered, the method calls createDefinedRelationshipGroup. |If something elseis entered,
the program returns without creating a new group. The group created is stored in a
temporary instance of groupMatrix, myGroupl. Subsequent groups are requested from the
user in the same manner and temporarily stored in another groupMatrix instance, myGroup?2.
Once two groups have been created, the method in groupCreator used to generate a cross
product group (createX ProdGroup) is called and the group generated is stored in the

26

groupCreator object. If another group needs to be added to the cross product, the previously
created group stored in the groupCreator object is moved to myGroupl and the processis
repeated. Once the final cross product has been performed, the createX ProdGroup method
will update the groupMatrix object stored in myGroup and then call the findGroupName
method that is discussed later in this chapter.

The final group generation button is the “User Defined Group” JButton,
btnUserDefinedGroup, is associated with a Java ActionListener that determines when the
button is pressed and calls the method createUserEntryGroup which is a method in the main
panel. The method opens a JOptionPane Input Dialog box requesting the user enter the order
of group the user will create. Error checking is done to ensure an integer greater than oneis
entered. If thereisan error at this point, the method returns without changing the currently
displayed group. The method in groupCreator used to create an empty group
(createEmptyGroup) is called and the empty group is stored in the groupCreator object. The
empty group is usually atable filled with the value -1 in each cell. The
createUserEntryGroup method will then update the groupMatrix object stored in myGroup
while allowing the user the ability to edit the group, unlike the other generation methods.
The JLabel above the group, IblGroupName, is then set to “Group Table: User Defined”
instead of calling the findGroupName method to set it.

Group Analysis Buttons

The remaining four buttons on the user interface are for analyzing the groups that are
ondisplay. They are particularly useful for the user entered groups. The first two buttons
determine if the Cayley table that is displayed is actually a group and whether that group is
abelian. There are two JLabels that are hidden from the user’s view unless specific
information needs to be displayed. Thisinformation is usually the results of the analysis
JButtons or the methods associated with the analysis JButtons. The JLabel, IblGroupName,
is at the top of the user interface and displays the name of the current group being displayed.
The JLabel, IbIResultsOfAnalysis, isjust above all the JButtons and displays the results of
the analysis buttons.

The methods associated with the action of the first two buttons directly interact with

the groupMatrix object, as that class has characteristic group tests associated with it. The

27

JButtons Check if Group, btnCheckGroup, and Check if Abelian, btnCheckAbel, are
associated with Java ActionListener’ s that determine when the buttons are pressed and call
the methods checklfGroup and checklfAbelian. Both methods would first replace the group
stored in the groupCreator object with the one being displayed in the groupPanel object in
case the group was edited. The methods would then use the groupMatrix object functionality
to ensure the group represented by the table had an identity element, had inverses for al the
elements, and was associative. The checklfAbelian method would also ensure the group
represented by the table was commutative. |f any of these tests failed, the JLabel,
IblResultsOfAnalysis would be updated with the cause of the failure in red text. Otherwise,
success of the test would be reported via IblResultsOfAnalysis in blue text.

The Find Group Name JButton, btnCheckName, is associated with a Java
ActionListener that determines when the button is pressed and calls the method
findGroupName. Thisisthe same method called by createZnGroup, createX ProdGroup, and
createDefinedRelationshipGroup methods. Similar to the checklfGroup method, this method
would first replace the group stored in the groupCreator object with the one being displayed
in the groupPanel object in case the group was edited. Unlike Gibbs, the method would also
ensure the group represented by the table was a group by determining if it had an identity
element, had inverses for all the elements, and was associative. If the table being displayed
isnot agroup the JLabel IblResultsOfAnaysis would be activated with message, “ Group
Table: Thisisnot a Group.” This was because the groupl dentify object has no error
checking to determine if agroup was a class before it tried to identify the group. The method
would then replace the group stored in the groupldentify object with the new group in the
groupCreator object which would start the identification process by groupldentify object.
Once the groupl dentify object was able to determine a name, the JLabel IblGroupName
would be set with that name.

The “Find Inner Automorphism” button is associated with a method is associated
with a Java ActionListener that determines when the button is pressed and calls the method
createlnnerAutGroup. Similar to the checklfGroup method, this method would first replace
the group stored in the groupCreator object with the one being displayed in the groupPanel
object in case the group was edited. The method would also ensure the group represented by
the table was a group by determining if it had an identity element, had inverses for al the

28

elements, and was associative. If the table displayed is not a group, a JOptionPane with an
error message dialog box would be activated as shown in Figure 4.

lllegal Group Error

® Error generating an Inner Automorphism Group.
Requires Initial Legal Group

0K

Figure 4. Error message dialog box.

The method in groupCreator used to create an inner automorphism group
(createlnnerAutGroup) is called and the group is stored in the groupCreator object. Upon
successful creation of a group, the createl nnerAutGroup method will update the groupMatrix
object stored in myGroup and then call the findGroupName method. Finally, the JLabel
IblResultsOfAnalysis is aso updated and displayed with the name of the group retrieved
from the groupldentify object that was updated by the findGroupName method.

CLASS GROUPPANEL

The secondary panel is a separate class used to display the Cayley table to the user.
This class is an extended JPanel class that is called groupPanel. It contains a JTable with a
JScrollPane so that the entire JTable can be viewed. Also, the groupPanel object is passed
and stores an instance of the groupMatrix object as a private variabl myGroup. This object
contains the actual group to be displayed. The class groupPanel alows changes to specific
cell valuesin the Cayley Table stored in myGroup via a public method changeV aluel nGroup.
Also, myGroup can be retrieved via the public method getGroup. The class
groupTableModel, which is an extended AbstractTableModel, isaso afield in groupPanel.
When it is instantiated, it is passed myGroup and then set as the JTable’s model. It usesthe
datain myGroup to fill the columns and rows in the JTable.

When a new group is generated via the JButtons on the main applet or frame, the
groupPanel’ s updateTable method is called to reset the myGroup as well as pass it to the
groupTableModel. The first column and header of the JTable are then set to different colors
because the first column contains the element represented for each of the rows in the Cayley

29

Tableon display. The column is set to a different color viaa DefaultTableCellRenderer, a
class used to displaying individual cellsin aJTable. The DefaultTableCellRenderer is
instantiated and its background, foreground, and font are set. This specific renderer is then

set as the specific cell renderer for column O of the JTable.

CLASSGROUPTABLEM ODEL

The groupTableModel classis an extension to the Java class AbstractTableModel and
describes how the user interface displays the Cayley Table stored in a groupMatrix object.
The groupPanel object being displayed as part of the user interface instantiated a
groupTableModel object. The JTable in groupPanel then uses this local instance of
groupTableModel asits model for where its datais located and how it is formatted.

The AbstractTableModel is an abstract class. An abstract class in Java contains
abstract methods or methods that have not been defined. A class that extends an abstract
class must implement the abstract methods in the abstract classit is extending in order to be
declared legal. The three abstract methods that must be implemented in a class that extends
an AbstractTableModel are:

public int getColumnCount()

public int getRowCount()

public Object getVaueAt(int row, int column)

The AbstractTableModel also implements most of the default methods of the
TableModel interface. The TableModel interface provides the other default methods that
help to define the way datais displayed in the JTable. Nevertheless, any class that extends
an AbstractTableModel can store its data in any type of data structure or outside source such
as a database or the class could generate the datareal time. It only needsto be able to
implement the getValueAt method in order to retrieve the data for a particular position in the
JTable.

The groupTableModel uses a private ArrayList of ArrayList of strings called
tableRows to store the data it parses from the groupMatrix object that it ispassed . This
ArrayList also represents the Cayley Table; however, an extra column isinserted at the
beginning to represent the row names which are the elementsin the group. Therefore, the

first column has a0 in thefirst row, a1 in the second row, etc., while the column names are

30

set to O for the second column, 1 for the third column, etc. The groupTableModel uses a
separate private ArrayList of strings called colHeaders to store the column names. A private
boolean value called canEditTable that is set based upon whether the JTable should be
editable, while a private integer is used to store the order of the displayed Cayley Table. The
groupTableModel classis not passed a groupMatrix object when it isinstantiated. Therefore,
it initially instantiates tableRows and colHeaders empty so the JTable is empty. However, a
pointer to the groupPanel class that instantiated groupTableModel is passed to the
groupTableModel when it is constructed so that it can pass back changes to the Cayley Table
in the setValueAt method that is overridden.

When a new group is generated, the groupPanel’ s updateTable method is called by
the methods used to generated new groups and is passed the new groupMatrix object and a
boolean value as to whether the JTable should be editable as its parameters. This method in
turn calls the groupTableM odel’ s display Table method with the same parameters. The
display Table method will set the boolean canEditTable with the boolean parameter and order
with the order of the Cayley Table stored in the groupMatrix object. The displayTable
method will then fill each ArrayList in tableRows with the corresponding ArrayList from the
groupMatrix object, adding the extra element to the front of each ArrayList that contains the
element name from the group corresponding to rows in the Cayley Table.

The abstract methods getColumnCount and getRowCount retrieve their data from the
the value of order, where the column count is order+1 and row count is order. The
getValueAt method retrieves the ArrayList of strings from tableRows corresponding to a
specific row and then returns a string corresponding to a specific column in that ArrayList as
the Object returned. The method getColumnName is overridden because the column names,
which are the same as the elements in the Cayley Table, are shifted one column over so row
names can be placed in the first column.

Since some of the displayed groups can be edited, both the isCell Editable and
setValueAt methods were overridden. The isCellEditable returns the value set in the
canEditCell boolean except in the case of cellsin column O, which can never be edited. The
setValueAt method is used to update the value stored in tableRows when the user edits the
JTrable manually. This method ensures only legal values are set on the Cayley Table,
integers from O to order-1. Also, the setValueAt updates the groupMatrix object stored in the

groupPanel object that instantiated groupTableModel. Thisisto ensure that the table can
later be analyzed using the analysis functionality in the main frame or applet.

31

32

CHAPTER 7

CODE DESCRIPTION

Gibbs' code was transferred from Pascal to Javain order to ease the addition of the
user interface described previously as well as enabling the ability to make the code object
oriented so that it could be easily extended and different objects could be used in other future
applications. The code utilizes a groupMatrix object that stores the group asits Cayley
Table. This alows the group to be stored independent of the operation that is performed on
the elements as well as any relationships between the elements. In addition, the
methodologies to analyze the group are also contained in the groupMatrix class. Utilizing
this single class allowed the code to transfer an object that would contain the group from the
generator object (groupCreator) to both the user interface object (the AbstractTableM odel
extension groupTableM odel) and the identifier object (groupldentify) along with the methods
those objects use to analyze the group.

CLASS GROUPM ATRIX

The groupMatrix class contains the order of the group and an ArrayList that holds an
ArrayList of String objects as private fields. Each value in the Cayley Table is represented
by a single String object that is the string representation of an integer value. Each row in the
Cayley Table is stored as an ArrayList of String objects and the entire group is stored as an
ArrayList of the rows of ArrayLists. The groupMatrix class has public methods to get and
set individual cellsin the Cayley Table as well as determine if the current group is equal to
another. The class also has public methods that alow the group to be reset to an entirely
new group or anew order. The class can be used to determine if the table is an actual group
because it has public methods to check for an identity element, an inverse for all elements,
and whether the table is associative as well as whether the table is commutative in order to
determine if the group is abelian. The class also has public methods to calculate and return
the identity element as well as the inverse of any other element. An additional public method

33

isavailable that has not been utilized that analyzes the stored Cayley Table to ensure that
none of the valuesin arow or column is repeated.

The determination of the identity element is particularly different because Gibbs
ident_gp.pas program assumed assumed that the identity element was always element 0. In
order to identify the identity element the processis.

1. Determinethe row in the Cayley Table where the row element, e, combines with
every column element, g, suchthat @ - g = g. Thisisthe left identity of the Cayley
Table.

2. Determine the column in the Cayley Table where the column element, g, combines
with every row element, g, such that & - § = . Thisistheright identity of the
Cayley Table.

3. If theleft and right identity elements are equal than the Cayley Table has an identity
that is equal to that element.

The identification of the identity element would take, at worst case, about 2n? operations
because determining the left and right identities would each take n? operations to check every
column in every row, and vice versa. Therefore, the total order for identifying the identity
element would be O(n?).

CLASS GROUPCREATOR

The groupCreator classis used to generate new groups that can be displayed and
analyzed viathe user interface. Much of the code for this class was adapted from Gibbs
original Pascal code. The groupCreator class has a private field of type groupMatrix, labeled
group, which is either sent to the groupCreator directly through the public resetGroup method
or built in groupCreator utilizing one of the group generator methods described below. Once
agroup is generated, it can be returned through the public getGroup method. There are now
five group generator methods. The first three, createCyclicGroup, createX ProdGroup, and
createDefineRelationGroup are all based upon Gibbs code and generate cyclic, cross
product, and defined relationship groups, respectively, using the approach Gibbs used in his
original code. The mgjor difference between these methods and Gibbs' generation programs
are the number of groups that can be generated. Thereis also a createEmptyGroup method
which fills all the cells of anxn Table with the value -1, where n is the order of the table to

be entered by auser. Thefinal generator method is createl nnerAutGroup which creates an

34

inner automorphism group based upon the current instance of group. Descriptions of how
each method works is given below.

createCyclicGroup Method

The method createCyclicGroup is nearly identical to the code used in Gibbs
create zn.pas program. The limit of order less than 32 for the cyclic groups was removed.
The order of the new group to be generated is passed in as a parameter to the method. If the
order of group in the current instance of the groupCreator class is different, group is reset
with the new order utilizing the groupMatrix resetSize method. Each entry in group’s Cayley
Table is then updated utilizing the setEntry method with a value corresponding to (row +
column) mod order. A check isthen done to ensure al the cellsin the Cayley Table have a
value before returning.

createDefineRelationshipGroup M ethod

The createDefineRel ationshipGroup method is passed an ArrayList of generators with
their orders, generatorList, and an ArrayList of groupRelation objects, relationships,
containing the defined relationships for the group. The orders of al the generators are
multiplied to determine the order of group which is then reset to that size. The private
method createFinal ElementList is then called with generatorList as its parameter. The
method first creates an ArrayList of ArrayList of String objects where ArrayList of Strings
would represent the different generators and the Strings in each ArrayList would represent
the elements that could be created from that generator. Therefore, each row could have a
different number of columns. For example, if generator O was of order 3, the possible
elements would be “”, 07, and “00”; whereas if generator 1 was of order 2, the possible
generators would be “” and “1”. The element from each generator would then be combined
in all possible combinations while ensuring generator O elements are always before generator
1 elements that are always before generator 2 elements, etc. Therefore, for the two
generators given above the final element list would be “”, “0”, “00”, “1”, “01”, and “001",
representing values 0-5 in the final Cayley Table. When the final element list is returned, the
createDefineRelationshipGroup method uses each of these elements as arow and column in
the Cayley Table. For each possible cell in the table, the elements in the table are combined

35

and they resulting value is reduced using the defined relationships stored in relationships to
reduce the results until it equals one of the final elements. The process for reducing the
combined elements to afinal element is:

1. Combine two elementsinto atemporary word
Begin reduction loop
Loop through each groupRelation in relationship
Compare left string of current groupRelation to temporary word

g WD

If left isin temporary word replace left in temporary word in string, replace left in
temporary word with right from the groupRelation and go to 2.

If another groupRelation isin the ArrayList relationship go to 3.

7. Reduction done, compare final temporary word to element list and set entry in table
for combination of the two elements to the element’ s position in the final element list.

Once al of the possible row, column combinations are calculated, the Cayley Tableis
complete. A check is done to ensure al the cellsin the Cayley Table have a value before

returning.

createXProdGroup Method

The createX ProdGroup is passed two groupMatrix objects gl and g2 as parameters.
The order of the new group is calculated by multiplying the order of the two parameter
groups. Thefinal elements of the group are then determined by combining each of the terms
in each of the groups as a combination pair as described in the Historical Description chapter
and storing the result in anx2 integer array, where n is the order of the cross product group.
Every combination of the final elements is performed where the result of joining two
combination pairsis the result of joining the elements of the pairs separately as aso
described in the Historical Description chapter. Therefore, every combination of final
elements results in another final element. The entry in the Cayley Table for each
combination is equal to the position of the resulting final element in the array of fina

elements.

createl nner AutGroup Method
The final group generator method cal cul ates the inner automorphism of group. The
method first calculates the inner automorphism for each element in the group creating at most

36

n temporary groupMatrix objects. Each temporary groupMatrix object is calculated by the
method createl nnerAutFromElement which is passed the element to induce the inner
automorphism as an integer parameter called element. The temporary groupMatrix is then
created by calculating every new element of the Cayley Table by replacing the current value
of the table, x, with the value element - x - element™. Each of the temporary groupMatrix
objects are compared to previous ones created to ensure that they are all unique. Each of the
groupMatrix objects is considered afinal element in the inner automorphism group and is
added to an ArrayList of groupMatrix objects called innerGroups.

The elements are combined using the method createl nnerAutFromTwoElements into
atemporary groupMatrix object nextGroup. Each combination represents one cell in the
Cayley Table where element in the Cayley Table coincides with a groupMatrix object in the
ArrayList innerGroups. Each groupMatrix object in the final element list can be represented
by an element from the original group. These elements are the elements used to form the
inner automorpohism induced by that element. The method
createl nnerAutFromTwoElements is passed the two elements, elmtA and elmtB, representing
the groupMatrix objects being combined. A new temporary group is created and returned by
the method createl nnerAutFromTwoElements by replacing every value x in the current
Cayley Table with the value elmtA - elmtB - x- elmtB™- eimtA™. The groupMatrix object
returned from the method createl nnerAutFromTwoElements is then compared to all of the
groupMatrix objects stored in innerGroups. The entry in the Cayley Table for the inner
automorphism group nextGroup for each combination is equal to the position of the resulting
final element in the ArrayList of final elements. The instance of group is then updated to the
inner automorphism group, groupNext which is used to update the display and is identified
by the method that called createl nnerAutGroup.

CLASS GROUPI DENTIFY
The groupldentify class identifies the group that is passed to the classviaa
groupMatrix object. Most of the code for this class was adapted directly from Gibbs
original Pascal code and the methods in the class mirror most of the procedures and functions
in Gibbs' original code. The method for identifying groups mirrors the five step process
outlined in the Historical Description process. Some of the major changes to the code

37

involve the use of the groupMatrix object and its analysis functionality particularly its ability
to determine if a group is commutative, identification of the identity element, and
identification of a specific element’sinverse.

The identification process is also more generic so that more isomorphisms could be
identified. In particular, the identification of the groups no longer requires the identity
element be element 0 and many of the non-abelian groups of order 32 were added utilizing
their Hall-Senior numbers. In Gibbs' code, the procedures to calculate the order structure of
the group, to calculate the centers of the group, and to determine the normality of the
subgroups specifically fixed the identity element as 0. The code for the groupldentify class
utilized the groupMatrix method findldentity method to make the process more generic.
Once the identity of the group isidentified, there were two possible avenues to adjust the
Gibbs' code in order to use any element as the identity. The first method would replace
every element in the zeroth row and column with the corresponding element in the identity
elements row and column. Thus, if the identity element was g, every element in row g
would be swapped with every element in row 0, as well as every element in column e would
be swapped with every element in column 0. Thiswould create a group isomorphic to the
original group, with the identity element as the zeroth element. Swapping the rows and
columns would take an additional 6n operations because each swap takes 3 operations and
there are n row elements and n column elements to swap. Thus, because the findl dentity
method runsin O(n?), the overall operation also runsin O(n?). The advantage of using this
method is the remainder of Gibbs code could be used to further identify the group.
However, by just using the findldentity method and adjusting Gibbs' code to use the results
of the findldentity method, the group table did not have to be changed during the
identification process.

Once a group has been identified, its name is stored in a private String field called
name that can be retrieved with the method getName. If the group cannot be identified, an
error message is stored in name and a private boolean field, identified, is set to false to
indicate the identification routine failed. The results stored in identified can be retrieved via
the method isldentified.

Appendix B, Cayley Table Code, is the code for the entire project. It contains more
information about each of the classes along with their fields and methods.

38

CHAPTER 8

ADDITIONAL WORK

Another class was created in order to analyze the creation of groups via brute force
and determine the number of isomorphisms there are when the identity is fixed as element O.
For example, the four Cayley Tables of order 3, when the identity is fixed at element O, are
shown in Figure 5.

~ o=

0.

Figure 5. Tables of order 3 with identity fixed at elemen

However, only the table in the upper left hand corner is an actual group (Zs). The other
tables, while each possesses an identity element, are not groups because they are al not
associative. For example, in the table in the upper right hand corner, the value of
@-2)- 2=2,whilethevalueof 1- (2- 2) =0.

The class groupPermutation was created to determine the number of Cayley Tables
that were isomorphic to groups of a specific order. Testing occurred for groups up to order 6.
Further testing could not be performed on higher order systems because there were (n-1)!™?
tables generated and analyzed for each order where n is the order of the group. Therefore,
while for order 3, there were (3-1)!®% = 4 total tables to generate and analyze, for order 6
there were (6-1)!®Y = 24,883,200,000 tables to generate and analyze.

The tables were built by generating the n! permutations of a set of n numbers and
using each of those sets of permutations in each row of the table. Thiswould fix the total
number of tablesto be generated at n!". However, only (n-1) elements needed to be

permuted for groups of order n because the identity element was kept fixed at element O.

39

Therefore, each row needed (n-1)! permutations generated for the remaining n-1 elementsin
each row. Also, there were now only (n-1) total rows that required the permutations, since
the first row was fixed due to the identity, the total number of tables that needed to be
generated was reduced to (n-1)!™Y. Another methods used to reduce the number of tables
generated was to ensure the columns contained elements as each row was added to the table.
Nevertheless, the number of tables to analyze and identify as groups increased dramatically
for every incremental increase in order of the groups. All groups of the same order were
analyzed and identified in one run. Therefore, the results for groups Z, and Z, A Z, were
attained during the same test run of the class groupPermutation, while the results for the
groups Zs and D3 were also gathered at the same time. The results for the groups of order
less than six are shown in Table 3.

Table 3. Number of Cayley Tablesfor Groups of Order <6

Group Name Order Total Number of Cayley Tables Number of Cayley
Generated Tables

Z3 3 4 1

Zy 4 216 3

Z,A Z,, Klein-4 4 216 1
Zs 5 331,776 6

Zs 6 24,883,200,000 60

D3, S5 6 24,883,200,000 20

The class groupPermutation used the class PermutationGenerator® to identify and
create an ArrayList of n PermutationGenerator objects that contained all permutations of the
integers 0 to n-1, where n is the order of the group. The class groupPermutation also
contains a private groupMatrix object, myGroup, to store the current Cayley Table being
generated and a private groupldentify object, groupNamer, to identify the name of the Cayley
Table stored in myGroup if it contains agroup. Another private integer, groupCount, is also
afield in groupPermutation that is used to keep track of the total number of groups identified

2 Gilleland, Michael. “Permutation Generator.” [http://www.merriampark.com/perm.htm]. March 2005.

40

for aparticular order. Once the ArrayList of PermutationGroup objectsis created, a method
in groupPermutation is then called recursively to fill myGroup row by row. The method’'s
parameters are the ArrayList of PermutationGroup objects and the number of rowsin
myGroup to fill. Each row utilizes one of the PermutationGenerator objects and |oops until
al of the permutations generated by that object aretried. After al the rows arefilled, the
groupMatrix analysis methods are checked to determine if it contains a group by ensuring the
Caylet Table stored in myGroup had an identity element, had inverses for all the elements,
and was associative. If myGroup contained a group, it was then passed to groupNamer to be
identified and the results were output to the screen.

Some short cuts were developed to reduce the total number of Cayley Tables that had
to be checked. The first row was aways kept as the identity and therefore, no other
permutations were tried. The permutations for each row had to start with the row number in
order to ensure column O contained the identity element. All other permutations for that row
were skipped before filling in additional rows. Also, as each new row was added, a check
was performed to ensure that no element is repeated in arow. If acolumn has an element
repeated, the last row is removed and the next permutation for that row is tried.

Due to the number of permutations of Cayley Tables that are possible only tables up
to order 6 weretried. It took 26 minutesfor all permutations of groups of order 6 with the
identity fixed at element O to be found. In contrast, it took less than 1 second for al

permutations of groups of order 5 with the identity fixed at element O to be found.

41

CHAPTER9

FUTURE WORK

There are two main areas of focus for future work: expansion of the code, its
capabilities, and usefulness and further analysis of groups and group theory to expand the
current capability of the code to identify more groups.

Currently, the code has basic analysis functionality to determine if a Cayley Table
stored in agroupMatrix object contains a group, if the elements commuite (i.e. the group is
Abelian), as well as the ability to determine the inner automorphism of a group. Expanding
these capabilities with new functionality could quickly yield the ability to identify the center
of agroup as well as determine the subgroups of a group and if a subgroup is normal.
Algorithms for these functions are already partially written in the groupl dentify code and
used to analyze some of the non-Abelian groups of order 16. For example, the method
computeCenter in the class groupldentify already determines the elements of agroup that are
in the center of the group by calculating which elements commute with all other elementsin
agroup. Based upon the elements found to be in the center and the current Cayley Table an
algorithm to generate the center of a group could quickly be added to the code and used for
further analysis of higher order groups.

An agorithm to determine the automorphism group of agroup G, Aut(G), would also
be useful. Further investigation would be necessary to expand the capabilities of the
groupCreator class to generate the automorphism group; however, automomphism groups are
important factors in determining semi-direct products of a group as well as useful in further
study abstract algebra concepts such as rings and fields.

Expanding the capability of the class groupldentify to identify groups with orders
similar to the functionality that tests for groups of order 2*p and p°. This would yield
quicker analysis of some groups than the current methodology for determining groups that
are non-Abelian which focuses on order structure of the groups. Thisis because the
differentiation of the groups by order structure breaks down at groups of order 16, and totally

falls apart with groups of order 32 in which there are order structures that define six groups

42

that are isomorphically distinct. One example of a new analysis method focuses on the
theorem, if group G is of the order |pg|, where p, g are prime and p < g, G isisomorphic to
either Zyq or if p| (g-1) then G could be isomorphic to Z, x0 Z,** Since the first step of the
groupldentify identification processis to check for cyclic groups, this method could be used
to determine specific non-Abelian groups before checking if the group is Abelian. For the
groups of order less than 32, this theorem works for not only the groups of order 2*p, but the
group Zz xo Z7 which is of order 21, while it shows why there is only the cyclic group for
order 15.

Further group theory work is also necessary to complete and expand the list of groups
that can be generated and identified. Determining all generators and relationships for the
non-Abelian groups of order 32 will require a much greater understanding of group theory;
yet, remains an ideal goal to achieve. Also, distinguishing between the groups and
identifying the groups of order 32 will be a necessary feature of the groupldentify class to
complete. While some groups of order 32 can now be identified, the current identification
utilizes the numbering system of Hall and Senior® to identify the classes with unique order
structure. Connecting the groups of order 32 with names based upon cross products or group
characteristics (e.g. dihedral and dicyclic) remains to be done. Also, only 10 of the 45 non-
Abelian groups had a unique order structure that allow for identification based upon the
techniques used by Gibbs. When the order structure and family number from Hall and
Senior® were combined to determine a group, 18 out of the total 45 non-Abelian groups
could be identified. Interestingly, one of the characteristics of groups with the same family
number was that they had the same inner automorphism group. Utilizing the inner
automorphism group along with new functionality that could quickly be added to the Cayley
Table code, such as group center and normality of subgroups, alarger number of the groups
of order 32 should be easily identified.

Nevertheless, much work still remains because the order structure, center, inner
automorphism, and determination of the normality of subgroups does not necessarily mean

% Charles Lanski, Concepts in Abstract Algebra, (Belmont, CA: Brooks Cole, 2005), 287.
2 Marshall Hall, Jr and James K. Senior, The Groups of Order 2" (n<=6), (New Y ork: Macmillan, 1964).
% Marshall Hall, Jr and James K. Senior, The Groups of Order 2" (n<=6), (New Y ork: Macmillan, 1964).

43

two groups are isomorphic. For example, the group formed by the cross product of

Z, A Z, A Quaternion, the group formed by the defined relationships &® = b* =1 and ba=a’b
and the group formed by the defined relationships & = b* =1 and ba=ab, all form groups
whose order structure (3 elements of order 2, 20 elements of order 4, and 8 elements of order
8), center group (Z2A Z,), and inner automorphism (D) are identical as well as have
subgroups that are not normal. However, there Cayley Tables are very different. The result
isthat we do not know if these groups are isomorphic. This is made even more complicated
because there are actually four groups through isomorphism with that order structure and
inner automorphism.?® Functionality that tests two groups of the same order to determine if
they are isomorphic would be extremely useful in determining if new defined relationships
for higher order groups define groups which have not been identified.

% Marshall Hall, Jr and James K. Senior, The Groups of Order 2" (n<=6), (New Y ork: Macmillan, 1964).

REFERENCES

Coxeter, H.S.M. and Moser, W.0.J. Generators and Relations for Discrete Groups. 4™ ed.
New Y ork: Springer-Verlag, 1980.

Gallian, Joseph. Contemporary Abstract Algebra. 5™ ed. New Y ork: Houghton Mifflin Co.,
2001

Gibbs, David. “Computer Generation and Identification of Groups of Order 2 to 31.”
Unpublished Math 797 Project, San Diego State University, 1984.

Gilbert, Jmmie and Gilbert, Linda. Elements of Modern Algebra. 5th ed. Pacific Grove, CA:
Brooks Cole, 2000.

Gilleland, Michael. “Permutation Generator.” [http://www.merriampark.com/perm.htm].
March 2005.

Hall, Marshall, Jr. and Senior, James K. The Groups of Order 2" (n<=6). New York:
Macmillan, 1964.

Lanski, Charles. Conceptsin Abstract Algebra. Belmont, CA: Brooks Cole, 2005.

Valero-Elizondo, Luis. “The Mod-2 Cohomology of 2-Groups (by Jon Carlson).”
[http://www.math.uga.edu/~lvalero/cohointro.htmlz]. May 2001.

Wavrik, John J. “ Groupsl5 and Groups32.”
[http://www.math.ucsd.edu/~jwavrik/G15_G32.html]. September 2003.

Weisstein, Eric W. “Mathworld—A Wolfram Web Resource.”
[http://mathworld.wolfram.com/]. March 2005.

APPENDIX A

ALL GROUPSOF ORDER 2TO 31AND SOME
GROUPS OF ORDER 32

45

46

Table 4. All Groups of Order 2to 31 and Some Groups of Order 32%%

Order Group Name Abelian Defining Relations
2 Z> Yes a=|
3 Z3 Yes a=|
4 Z4 Yes a =
Z2A Z5, Klein-4 Yes a=b"=1I,ba=ab
5 Zs Yes a =
6 Zs Yes &=
D3, S No a=b’=I,ba=a'b
7 Z7 Yes a’ =|
8 Zs Yes a =
Z.A Z, Yes a=b’=I,ba=ab
Z,A Z,A 7, Yes a=b’=c’=1, ba=ab, ca=ac, ch=hc
D. No a =b’=I,ba=a'b
<2,2,2> or Quaternion No a=1,b’=2a, ba=alb
9 Z9 Yes a =|
Z5A 75 Yes a=b>=I,ba=ab
10 Z10 Yes al=|
Ds No a=b’=I,ba=a'b
11 Z11 Yes at=|
12 Z12 Yes a’=|
ZsA Z, Yes &@=b’=1I,ba=ab
Ds No &=b’=1I,ba=a'b
A4 No a=b’=c’=1, ba=ab, ca=bc, cb = ahc

" David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31" (unpublished Math

797 Project, San Diego State University, 1984), 5-9,13-15

%8 H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4" ed. (New Y ork:

Springer-Verlag, 1980), 134-135.

a7

<22,3> No a=b"=I,ba=a’b
13 Z13 Yes as=|
14 Z14 Yes at=l
D, No a’'=b°=1I,ba=a’b
15 Zss Yes a>=|
16 Z16 Yes a’=l
ZsA Z, Yes a=b’=1,ba=ab
Z4A Z4 Yes a=b*=1,ba=ab
Z4A Z2R 7, Yes a' =b’=c?=1, ba=ab, ca=ac, ch=hc
Z,R Z,A Z,A Z, Yes a=b’=c’=d" =1, ba=ab, ca=ac,
da=ad, cb=bc, db=bd, dc=cd
ZoA Dy No cross product
Z> A Quaternion No cross product
Ds No &=b"=I,ba=a'b
<2,2,4>or Qq No a&=1,b’=4d" ba=alb
Z4 X0 Z4 No a =b'=1,ba=a'b
Zg X0 Z, No &=b"=I, ba=a’b
Zg Xi Z; No &=b"=1I,ba=a’d
Weird1l No a' =b’=c’=1. ba=ab, ca=ac, ch=aahc
Weirdl No a' =b’=c?=1. ba=ab, ca=abc™, ch=bc
17 Z17 Yes a’=l
18 Z1s Yes a=|
ZsA Z3 Yes &£=b=1,ba=ab
Z3A D3 No cross product
Dy No a=b"=I,ba=a'b
<<3,33;2>> No & =Db’=c"=1.ba=ab, ca=a’, cb=b’c
19 Z19 Yes a’ =l
20 Z20 Yes a’=l

48

Z10A 7, Yes a’=b’=1, ba=ab
Dio No a =b’=1,ba=a’b
K-Metacyclic 20 No a=b"=I, bamaab
<2,2,5> No a=b"=1,ba=a’b
21 2 Yes at=|
Z7%0 Z3 No a’=b’=1, ba=aab
22 Z» Yes a’=I
D1 No a =b’=1,ba=a’b
23 Za3 Yes a =I
24 Zoa Yes at=|
Z1,A 7, Yes a‘=b’=I, ba=ab
ZsA Z,A Z, Yes & =b°=c"=1, ba=ab, ca=ac, ch=hc
ALA Z, No Cross Product
DsA Z, No Cross Product
D4A Z3 No Cross Product
QuaternionA Z3 No Cross Product
DsA Z4 No Cross Product
<22,3>A 7, No Cross Product
D12 No a‘=b’=1,ba=a'b
S, No a=b’=c’=d*=1, ba=ab, ca=abc,
da=ad, ch=ac, db=abd, dc=cd
<2,33> No d'=c’=1, b’=a’, ba=a"b, ca=hc, ch=abc
<4,6|2, 2> No a'=b°=1,ba'=ab™, ba=a’b™
<2,2,3 No a=b"=1,ba=a’b
<2,2,6> No a‘=1,b° =2, ba=a'b
25 Zs Yes a =|
ZsA Zs Yes a&=b’=1I,ba=ab
26 Zas Yes a°=I

49

Di3 No a =b’=1,ba=a’b
27 Zs7 Yes a =I
Z9A Z3 Yes a =b’=1I,ba=ab
Z:A Z3A Z5 Yes a=b’=c’=1, ba=ab, ca=ac, ch=hc
<3.3|3,3> No a=b’=c’=1, ba=ab, ca=ac, ch=aabbc
Weird27 No a =b’ =1, ba=aaaab
28 Zas Yes a=|
Z14 A 7, Yes a*=b’=1I, ba=ab
D14 No a'=b’=1,ba=a'b
<2,2, 7> No a’'=b*=1,ba=a’b
29 Z29 Yes a =I
30 Z3 Yes a’=|
DsA Z3 No Cross Product
D3A Zs No Cross Product
Dis No a =b’=1,ba=a’b
31 Z3 Yes a =I
32 Zs Yes a’=|
Z16A 7, Yes a®=b’=1I, ba=ab
ZsA Z4 Yes a=b'=1,ba=ab
ZsA Z,A Z, Yes a =b’=c"=1, ba=ab, ca=ac, cb=bc
ZsA Z,A Z, Yes a =b'=c"=1, ba=ab, ca=ac, ch=hc
ZsAZ,A Z,A Z, Yes a =b’=c’=d’=1, ba=ab, ca=ac,
da=ad, cb=bc, db=bd, dc=cd
Z,AZ,AZ,AZ,A Z, Yes a=b’=c’=d°=f =1, ba=ab, ca=ac,
da=ad, fa=af, cb=bc, db=bd, fb=Dbf,
dc=cd, fc=cf, fd=df
Z,A Z,A D, No Cross Product
Z> A Z> A Quaternion No Cross Product

50

Z,A Dg No Cross Product
ZoA Q4 No Cross Product
Z,A Z4x024 No Cross Product
Z,A Zgx0Z, No Cross Product
Z,A Zgxi Z, No Cross Product
Z, A Weird1 No Cross Product
Z, A Weird1 No Cross Product
Z4A Dy No Cross Product
Z4 A Quaternion No Cross Product
Dis No a’=b"=1,ba=a'b
<2,2,8> No a’=1,b" =a’ ba=a'b
Z16 X0 Z3 No a®=b’=1,ba=ab
Z16 Xi Z2 No a®=b’=1,ba=a’b

APPENDIX B

CODE

51

52

M AIN.JAVA

Mai n. j ava

L T

Created on January 16, 2005, 1:12 PM
/

package cayl eyt abl e;

i mport javax.sw ng.*;

i mport java.awt.*;

i mport java.awt.event.*;

i mport java.io.*;

i mport java.util.*;

/**

* Main class for use in running the Cayl ey Tabl e generation and
* jdentification software froma comrand |ine.
* @uthor Jeffrey Barr

*/

public class Miin {

/**

* Main class instantiates a <CODE>gr oupMai nFrame</ CODE> cl ass to open
* the user interface via a call to the Main class when the jar file

* added to the class path.
*/
public Min() {
gr oupMai nFrane app = new groupMai nFrane();
app. addW ndowlLi st ener (new W ndowAdapt er ()

{
public void w ndowCd osi ng(W ndowEvent e)
{
System exit(0);
}
}
)
}
/**

* Main class instantiates a <CODE>gr oupMai nFrame</ CODE> cl ass to open
* the user interface via a call fromthe comrand |i ne.
* @aram args Command |ine argunents
*/
public static void main(String[] args) {
gr oupMai nFrane app = new groupMai nFrane();
app. addW ndowli st ener (new W ndowAdapt er ()

{
public void w ndowC osi ng(W ndowEvent e)
{
Systemexit(0);
}

}

L

53

GROUPM AIN.JAVA

groupMai n. j ava

Created on January 16, 2005, 1:19 PM
/

package cayl eyt abl e;

i mport javax.sw ng. *;

i mport java.awt.*;

i mport java.awt.event.*;
i mport java.io.*;

i mport java.util.*;

/*

*

EE T T R

*

Mai n Frame of Cayley table viewer for use when tool is run as a

standl one program See <CODE>groupMai n</ CODE> for identical version
in applet format. User inteface that contains <CODE>gr oupPanel </ CODE>
that displays Cayley Table and buttons to generate and anal yze a

Cayl ey Tabl e.

@ut hor Jeffrey Barr

/

public class groupMai n extends javax.sw ng. JAppl et {

/**

* Initializes the appl et <CODE>groupMi nFrane</ CODE> through call to

initialize all

* of the conponents in the applet.

*/
public void init() {
try {
j ava. awt . Event Queue. i nvokeAndWai t (new Runnabl e() {
public void run() {
i ni t Components();
}
1)
} catch (Exception ex) {
ex. print StackTrace();
Systemout.println("Error: " + ex.getlLocalizedMessage());
}
}
/ *

*

* This method is called fromw thin the <CODE>i nit () </ CODE>net hod to
* initialize the form

* WARNI NG Do NOT nodify this code. The content of this nethod is

* al ways regenerated by the Form Editor.

* Code generated via Netbeans.
*/
private void initConmponents() {//CGEN BEG N:i ni t Conponent s
java. awm . & i dBagConstrai nts gri dBagConstraints;

groupNaner = new cayl eyt abl e. groupl dentify();
nmyCreat or = new cayl eytabl e. groupCreator();

| bl G oupNane = new j avax. sw ng. JLabel ();

myG oup = new cayl eyt abl e. gr oupPanel () ;

| bl Resul t sOF Anal ysi s = new j avax. swi ng. JLabel ();
| bl PropertyButtons = new j avax. swi ng. JLabel ();
bt nCheckG oup = new j avax. sw ng. JButton();

bt nCheckAbel new j avax. swi ng. JButton();

bt nCheckNane new j avax. swi ng. JButton();

bt nl nner Aut = new j avax. swi ng. JButton();

| bl Gener at or Buttons = new j avax. swi ng. JLabel ();
bt nZnGroup = new j avax. swi ng. JButton();

bt nXProdG oup = new j avax. sw ng. JButton();

bt nUser Def i nedG oup = new j avax. swi ng. JButton();
bt nDef Rel nGroup = new j avax. swi ng. JButton();

get Cont ent Pane() . set Layout (new j ava. awmt . G i dBagLayout ());

| bl GroupNan®e. set Hori zont al Al i gnnent (j avax. swi ng. Swi ngConst ant s. CENTER) ;
| bl G oupNan®e. set Text (gr oupNaner . get Name()) ;
gri dBagConstraints = new java. awmt . & i dBagConstraints();
gri dBagConstraints.gridx = O;
gri dBagConstraints.gridy = O;
gri dBagConstraints.gridw dth =
j ava. am . & i dBagConst r ai nt s. REMAI NDER;
gri dBagConstraints.fill = java.aw .G idBagConstraints. BOTH,
gri dBagConstraints. wei ghtx = 1.0;
get Cont ent Pane() . add(| bl G oupName, gri dBagConstraints);

gri dBagConstraints = new java. awm . & i dBagConstraints();
gri dBagConstraints.gridy = 1;
gri dBagConstraints.gridw dth =
j ava. am . & i dBagConst r ai nt s. REMAI NDER;
gri dBagConstraints.fill = java.aw .G idBagConstraints. BOTH,
gri dBagConstraints. wei ghty = 1.0;
get Cont ent Pane() . add(myG oup, gridBagConstraints);

| bl Resul t sOF Anal ysi s. set Hori zont al Al i gnnent (j avax. swi ng. Swi ngConst ant s. CEN
TER) ;

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);

gri dBagConstraints = new java. awmt . & i dBagConstraints();

gri dBagConstraints.gridx = O;

gri dBagConstraints.gridy = 11;

gri dBagConstraints.gridw dth =
j ava. am . & i dBagConst r ai nt s. REMAI NDER;

gridBagConstraints.fill = java.aw .G idBagConstraints. BOTH,

gri dBagConstraints. wei ghtx = 1.0;

get Cont ent Pane() . add(| bl Resul t sOF Anal ysi s, gridBagConstraints);

55

| bl PropertyButtons. set Hori zont al Al i gnment (j avax. swi ng. Swi ngConst ant s. LEFT)

| bl PropertyButtons. set Text (" Check G oup Properties:");
gri dBagConstraints = new java. awmt . & i dBagConstrai nts();
gri dBagConstraints.gridx = O;

gri dBagConstraints.gridy = 12;

gri dBagConstraints.gridw dth =

j ava. amt . & i dBagConstr ai nt s. RELATI VE;

gridBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(| bl PropertyButtons, gridBagConstraints);

bt nCheckG oup. set Text (" Check if G oup");
bt nCheckG oup. addAct i onLi st ener (new

java. awm . event. Acti onLi stener () {

public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
checkl f Group(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstrai nts();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nCheckG oup, gri dBagConstraints);

bt nCheckAbel . set Text (" Check if Abelian");
bt nCheckAbel . addAct i onLi st ener (new j ava. awt . event . Acti onLi st ener ()

public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
checkl f Abel i an(evt);
}

1)

gri dBagConstraints = new java. awmt . & i dBagConstrai nts();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nCheckAbel , gri dBagConstraints);

bt nCheckNane. set Text ("Fi nd Group Nane");
bt nCheckNane. addAct i onLi st ener (new j ava. awt . event . Acti onLi st ener ()

public void actionPerformnmed(java. awt.event. Acti onEvent evt) ({
fi ndG oupNane(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstraints();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.aw .G idBagConstrai nts. HORI ZONTAL;
get Cont ent Pane() . add(bt nCheckName, gri dBagConstraints);

bt nl nner Aut . set Text ("Fi nd | nner Aut onor phism');
bt nl nner Aut . addAct i onLi st ener (new j ava. awm . event . Acti onLi st ener ()

public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat el nner Aut G oup(evt);

56

}
1)

gri dBagConstraints = new java. awmt . & i dBagConstrai nts();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.aw .G idBagConstrai nts. HORI ZONTAL;
get Cont ent Pane() . add(bt nl nner Aut, gri dBagConstraints);

| bl Gener at or Butt ons. set Hori zont al Al i gnnent (j avax. swi ng. Swi ngConst ant s. LEFT
)
| bl Gener at or But t ons. set Text (" Choose Type of Goup to Enter:");
gri dBagConstraints = new java. awmt . & i dBagConstrai nts();
gri dBagConstraints.gridx = O;
gri dBagConstraints.gridy = 14;
gri dBagConstraints.gridw dth =
j ava. amt . & i dBagConstr ai nt s. RELATI VE;
gri dBagConstraints.fill = java.awt .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(| bl Gener at or Butt ons, gri dBagConstraints);

bt nZnGr oup. set Text ("Cyclic G oup");
bt nZnGr oup. addAct i onLi st ener (new j ava. awt . event . Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eZnG oup(evt);
}

1)

gri dBagConstraints = new java. awmt . & i dBagConstrai nts();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nZnG oup, gri dBagConstraints);

bt nXPr odG oup. set Text (" Cross Product G oup");
bt nXPr odG oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eXProdG oup(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstraints();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.awt .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nXPr odG oup, gri dBagConstraints);

bt nUser Def i nedG oup. set Text (" User Defined G oup");
bt nUser Def i nedG oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerformnmed(java. awt.event. Acti onEvent evt) ({
creat eUser Ent ryG oup(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstraints();
gri dBagConstraints.gridy = 15;
gri dBagConstraints.fill = java.aw .G idBagConstrai nts. HORI ZONTAL;

57
get Cont ent Pane() . add(bt nUser Def i nedG oup, gri dBagConstraints);

bt nDef Rel nGr oup. set Text ("Defi ned Rel ati onship G oup");
bt nDef Rel nGr oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eDefi nedRel ati onshi pGoup(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstraints();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.aw .G idBagConstrai nts. HORI ZONTAL;
get Cont ent Pane() . add(bt nDef Rel nG oup, gri dBagConstraints);

}// GEN- END: i ni t Conponent s

/**

* Method to create the groups based upon a defined relationship calls

* the <CODE>groupCreator</CODE> object functionality to create and
store the group.

*

* The group i s named by <CODE>gr oupNaner </ CODE>
<CODE>gr oupl dent i f y</ CODE> obj ect after creation.
* @aram evt Launched by the push of <CODE>bt nDef Rel nG oup</ CODE>.
*/
private void createDefinedRel ati onshi pG oup(java. aw . event. Acti onEvent
evt) {//CEN FIRST: event _creat eDefi nedRel ati onshi pG oup
ArrayLi st<String> generatorlList = new ArraylLi st<String>();
ArraylLi st <gr oupRel ati on> defi nedRel ati onshi ps = new
ArrayLi st <groupRel ati on>();

String def Rel Name = "Group Table: Defined Rel ationship”;

/1 Determ ne nunmber of generators to be used and error check that it
is a legal value
String defRel String = JOpti onPane. show nput Di al og(nul |,
"Enter the nunber of generators
in the defined relationship. ",
"Defined Rel ati onship D al og",
JOpt i onPane. QUESTI ON_MESSACGE) ;
i nt def Rel Nuntf Generators = -1,

i nt nunRel ati onshi ps;
try

def Rel NunOf Generators = | nteger. parselnt(defRel String, 10);
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul |,
defRel String + " is not a |egal
nunmber!" +
"\nError: " + e.getMessage(),
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;

bl nG oupCreated = fal se;

return;

}

nunRel ati onshi ps = factorial (def Rel NunOf Gener at ors);
System out. println("Defining Rel ationships");
i f (defRel NunCX Generators < 2)

JOpt i onPane. showMessageDi al og(nul |,
"You cannot create a defined
relationship with | ess" +
" than two groups.”, "Defined
Rel ati onship Error",
JOpt i onPane. ERROR_MESSAGE) ;
bl nG oupCreated = fal se;
return;

}

/1 Determ ne the nunber of elements in each generator
String el ement String;
for (int n=0; n<defRel NuntX Generators; n++)

{
el ement String = JOpti onPane. show nput Di al og(nul I,

"Enter the nunber of
el ements in generator " + n,

"El enent Query Dial og",
JOpt i onPane. QUESTI ON_MESSACGE) ;

/1 Ensure elenent string is an integer
try
{

I nt eger. parselnt(el ementString, 10);
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showessageDi al og(nul |,

58

elementString + " is not a | egal

nunber!" +
"\nError: " + e.getMessage(),
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
n =n-1;
conti nue;

}

gener at or Li st . add(el ement Stri ng);
def i nedRel at i onshi ps. add(new gr oupRel ati on(n,
I nt eger. parselnt (el emrent String, 10)));

bool ean extraRel ati on
whil e (extraRel ation)

{

String question

true;

JOpt i onPane. showl nput Di al og(nul I,
"Do you have an extra
rel ati onshi p between generators?\n"

59

+ " Enter yes/no. ",
"Rel ati onshi p Di al og",

JOpt i onPane. QUESTI ON_MESSACGE) ;
guestion = question.toLowerCase();
i f (question.conpareTo("yes") == 0 || question.conpareTo("y")

{
String rel ationship = JOpti onPane. show nput Di al og(nul |,

"Enter the extra
rel ati onship.",

"Rel ationship
D al og"”,

JOpt i onPane. QUESTI ON_MESSACGE) ;
groupRel ati on extra = new groupRel ation(rel ationshi p,
generatorlList);
bool ean foundMatch = fal se;
for (int i=0; i<definedRel ationships.size(); i++)
{
groupRel ati on tenpRel = (groupRel ati on)
defi nedRel ati onshi ps. get (i);
if (extra.getlLeft().conpareTo(tenpRel.getLeft())
== O)

defi nedRel ati onshi ps.set (i, extra);
foundvat ch = true;

}

}
if (!foundiatch) definedRel ati onshi ps. add(extra);
}

el se
extraRel ation = fal se;

}

for (int i=0; i<defRel NunOXfGenerators-1; i++)

{
for (int j=i+1; j<defRel NunCf Generators; | ++)

def i nedRel ati onshi ps. add(new groupRel ation(j, i,
get Next Rel ati onship(i,j), generatorList));

}

Systemout. println("Rel ati onshi ps Defined");
for (int j=0; j<definedRel ationships.size(); j++)

{
groupRel ation tenp = (groupRel ation)
defi nedRel ati onshi ps.get(j);
Systemout.println(j +

tenp. getRi ght ());
}

+ tenp.getlLeft() + " =" +

Systemout. println("Rel ati onshi ps Defined tw ce");

if (myCreator.createDefineRel ati onG oup(gener at orLi st,
def i nedRel ati onshi ps))

nmyG oup. updat eTabl e(nyCreat or. get G oup(), false);
Systemout.println("Attenpting to identify group");
fi ndG oupNane(evt);

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text ("");

bl nG oupCreated = true;

el se

| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. white);
| bl Resul t sOF Anal ysi s. set For egr ound(Col or . RED) ;
| bl Resul t sOF Anal ysi s. set Text("Error: No Defined Rel ationship
G oup Found");
Systemout. println("No Defined Rel ati onship G oup Found");
bl nG oupCreated = fal se;

}
}// GEN- LAST: event _cr eat eDef i nedRel at i onshi pG oup

/**
* Method to allow user to enter group of defined order calls
* the <CODE>groupCreator</CODE> object functionality to create and
store the group.
* @aram evt Launched by the push of
<CODE>bt nUser Def i nedGr oup</ CODE>.
*/
private void createUserEntryG oup(java. awm . event. Acti onEvent evt)
{// GEN- FI RST: event _creat eUser EntryG oup
String orderString = JOptionPane. show nput Di al og(nul I,
"Enter the size of the group
you would like to create.",
"User Group D al og”,
JOpt i onPane. QUESTI ON_MESSACGE) ;
int order = 0;
try
{

order = Integer.parselnt(orderString, 10);
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul I,
orderString +

is not a |legal

nunmber!" +

"\nError: " + e.getMessage(),
"Nunber Error",

JOpt i onPane. ERROR_MESSAGE) ;

return;
}
if (order > 1)

if (!'nyCreator.createEnptyG oup(order))
{

60

61

JOpt i onPane. showessageDi al og(nul |,
"Error generating an enpty group
of order " +
orderString + ".\nNO GROUP WAS

GENERATED",
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
}
myG oup. updat eTabl e(nyCreat or. get G oup(), true);
| bl Resul t sOF Anal ysi s. set Text ("");
}
el se
{

JOpt i onPane. showMessageDi al og(nul |,
"The group order nust be an integer
greater than 1.",
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;

}

| bl G oupNane. set Text ("G oup Table: User Defined");
| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text ("");
}// GEN- LAST: event _creat eUser Ent ryG oup

*

/
Method to create the groups based upon a cross product of at

| east two other groups calls the <CODE>groupCreat or </ CODE> obj ect
functionality to create and store the group.

L T N

* The group is named by <CODE>gr oupNamer </ CODE>
<CODE>gr oupl dent i f y</ CODE> obj ect after creation.
* @aram evt Launched by the push of <CODE>bt nXProdG oup</ CODE>.
*/
private void createXProdG oup(java.awt.event. Acti onEvent evt) {//CGEN
FI RST: event _cr eat eXPr odG oup
cayl eyt abl e. groupMatri x nmyG oupl
cayl eyt abl e. groupMatri x nmyG oup2

new cayl eyt abl e. groupMatri x(0);
new cayl eyt abl e. groupMatri x(0);

String XProdName = "G oup Table: ;
String XProdString = JOptionPane. show nput Di al og(nul I,
"Enter the nunmber of groups in
the cross product. ",
"Cross Product D al og”,
JOpt i onPane. QUESTI ON_MESSACGE) ;
i nt XProdNunmOFf G oups = -1;

try
XPr odNunmf Groups = Integer. parselnt(XProdString, 10);
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul I,
XProdString + " is not a |egal
nunmber!" +

"\ nError: + e. get Message(),

62

"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}

i f (XProdNumOFf Groups <= 1)

JOpt i onPane. showMessageDi al og(nul |,
"You cannot create a cross product
with [ess" +
" than two groups.”, "Cross Product
Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}

String choice = JOptionPane. show nput Di al og(nul I,
"Enter 1 if first group is a
Cyclic group, else enter 2 for a Defined Relationship. ",
"Cross Product Choice Dial og",
JOpt i onPane. QUESTI ON_MESSACGE) ;
if (choice.equals("1"))

i f (createNextCyclicGoup())
XPr odNunmf Gr oups = XPr odNuncf G oups - 1;
el se
return;

el se if (choice.equals("2"))

{
creat eDefi nedRel ati onshi pGoup(evt);
i f (bl nG oupCreat ed)
XPr odNunmf Gr oups = XPr odNuncf G oups - 1;
el se
return;
}
el se

JOpt i onPane. showMessageDi al og(nul |,
"You must select either a Cyclic group
or defined rel ationship",
"Cross Product Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}

whi I e (XProdNunmOf Groups > 0)

{
myG oupl. reset G oup(nyCreator.get Goup());

choi ce = JOpti onPane. show nput Di al og(nul |,
"Enter 1 if next group is a
Cyclic group, else enter 2 for a Defined Rel ationship. ",
"Cross Product Choice Dial og",

JOpt i onPane. QUESTI ON_MESSACGE) ;
if (choice.equals("1"))
{
i f (createNextCyclicGoup())
myG oup2. reset G oup(nyCreator. get Goup());
el se
return;

el se if (choice.equals("2"))

{
creat eDefi nedRel ati onshi pG oup(evt);
i f (bl nG oupCreat ed)
nmyG oup2. reset G oup(nyCreator. get Goup());
el se
return;
}
el se
{

JOpt i onPane. showMessageDi al og(nul |,

63

"You must select either a Cyclic

group or defined rel ationship"”,
"Cross Product Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}
if (!'nyCreator.createXProdG oup(nmyG oupl, myG oup2))

JOpt i onPane. showessageDi al og(nul |,
"Error generating a Cross
Product” +
" Goup.\nNO GROUP WAS
GENERATED',
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}
XPr odNunmf Gr oups = XPr odNuncf G oups - 1;

}
myG oup. updat eTabl e(nyCreat or. get G oup(), false);
fi ndG oupNane(evt);
bl nG oupCreated = true;
| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text ("");
}// GEN- LAST: event _cr eat eXPr odG oup

/**

* Method to create a cyclic group of a user defined size calls the
* <CODE>gr oupCr eat or </ CODE> obj ect functionality to create and store

t he group.
*

* The group i s named by <CODE>gr oupNaner </ CODE>

<CODE>gr oupl dent i f y</ CODE> obj ect after creation.
* @aram evt Launched by the push of <CODE>bt nZnG oup</ CODE>.
*/

private void createZnG oup(java. awt.event. Acti onEvent evt) {//CGEN
FI RST: event _creat eZnG oup
i f (createNextCyclicGoup())
{
myG oup. updat eTabl e(nyCreat or. get G oup(), false);
fi ndG oupNane(evt);
bl nG oupCreated = true;

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text ("");
}// GEN- LAST: event _cr eat eZnG oup

/**

* Method to call functionality in <CODE>groupCreator</CODE> to create
t he
* inner autonorphismof the current group currently stored in
<CODE>nyCr eat or </ CODE>
* <CODE>gr ouphat ri x</ CODE> obj ect .
*
* The group replaces what is stored i n <CODE>nyG oup</ CODE>
<CODE>gr oupCr eat or </ CODE> obj ect
* and nanmed by <CODE>groupl dentify</CODE> after creation.
* @aram evt Launched by the push of <CODE>bt nl nner Aut </ CODE>.
*/
private void createl nner Aut G oup(java. awt . event. Acti onEvent evt)
{/ 1 GEN- FI RST: event _cr eat el nner Aut G oup
if (I'nyCreator.reset G oup(nyG oup.get Goup())
|| 'myCreator.getGoup().checkForldentity()
|| !'myCreator.get Goup().checkForlnverse()
|| '"myCreator.getGoup().checklfAssociative())
{
JOpt i onPane. showMessageDi al og(nul |,
"Error generating an |nner
Aut onor phi sni' +
" Goup.\nRequires Initial Legal
G oup",
"I'l'legal G oup Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}

if (myCreator.createl nner Aut G oup())

nmyG oup. updat eTabl e(nyCreat or. get G oup(), false);
fi ndG oupNane(evt);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. white);
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. BLUE) ;
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Text ("1 nner Aut onor phi sm Found: " +
gr oupNaner . get Nanme()) ;
}

el se

| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| Resul t sOF Anal ysi s. set Backgr ound(Col or. white);

Ib
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. RED) ;

| bl Resul t sOF Anal ysis.set Text("Error: No Inner Autonorphism
G oup Found");
Systemout. println("No I nner Autonorphism Goup Found");
}

}/ | GEN- LAST: event _cr eat el nner Aut G- oup

/**

* Method to nanme the group stored in <CODE>nyCreat or </ CODE>
<CODE>gr oupCr eat or </ CODE> object with the
* <CODE>gr oupNaner </ CODE> <CCODE>gr oupl dent i f y</ CODE> obj ect and
di splays the results on
* <CODE>| bl G- oupNane</ CODE> JLabel obj ect.
* @aram evt Launched by the push of <CODE>bt nCheckNane</ CODE>.
*/
private void findG oupNanme(java. awt. event. Acti onEvent evt) {//CGEN
FI RST: event _fi ndG oupNane
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl G oupNane. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. yel | ow) ;
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. red);
if (!'nyCreator.reset G oup(nyG oup.getGoup()))
| bl G oupNane. set Text ("G oup Table: This is not a Goup");
else if (ImyCreator.getGoup().checkForldentity())
| bl G oupNane. set Text ("G oup Table: This is not a Goup");
else if (I'myCreator.getGoup().checkForlnverse())
| bl G oupNane. set Text ("G oup Table: This is not a Goup");
else if (ImyCreator.getGoup().checklfAssociative())
| bl G oupNane. set Text ("G oup Table: This is not a Goup");
el se

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
groupNaner . reset G oupl dentify(nyCreator.get Goup());
| bl G oupNan®e. set Enabl ed(true);
| bl G oupNane. set Text ("G oup Table: " + groupNaner. get Name());

}
}// GEN- LAST: event _fi ndG oupNane

/**

* Method to determine if the table stored in the
<CODE>ny Cr eat or </ CODE> <CODE>gr oupCr eat or </ CODE>

* object is an Abelian group using the analysis functions that are a

part of <CODE>groupMatri x</ CODE>
* and displays the results on <CODE>| bl Resul t sOF Anal ysi s</ CODE>
JLabel object.
* @aram evt Launched by the push of <CODE>bt nCheckAbel </ CODE>.
*/
private void checklfAbelian(java.awt .event. Acti onEvent evt) {//CGEN
FI RST: event _checkl f Abel i an
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. YELLOW ;
| bl Resul t sOF Anal ysi s. set For egr ound(Col or . RED) ;

if (!'nyCreator.reset G oup(nyG oup.getGoup()))

65

| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because

there currently is no table to check!");

66

else if (ImyCreator.getGoup().checkForldentity())
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
it does not have an identity elenment");
else if (I'myCreator.getGoup().checkForlnverse())
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
it does not have an inverse for each elenment");
else if (ImyCreator.getGoup().checklfAssociative())
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
it is not associative");
else if (ImyCreator.getGoup().checklfCommutative())
| bl Resul t sOF Anal ysi s. set Text ("The table is not an Abeliain
G oup because it is not comrunative");

el se
{ _
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. BLUE) ;
| bl Resul t sOF Anal ysi s. set Text (" The table is an Abelian
G oup.");
}

}// GEN- LAST: event _checkl f Abel i an

/**

* Method to determine if the table stored in the
<CODE>ny Cr eat or </ CODE> <CODE>gr oupCr eat or </ CODE>
* object is a group using the analysis functions that are a part of
<CODE>gr oupat ri x</ CODE>
* and displays the results on <CODE>| bl Resul t sO Anal ysi s</ CODE>
JLabel object.
* @aram evt Launched by the push of <CODE>bt nCheckG oup</ CODE>.
*/
private void checklfG oup(java.aw . event. Acti onEvent evt) {//CGEN
FI RST: event _checkl f G oup
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. yel | ow) ;
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. red);

if (!'nyCreator.reset G oup(nyG oup.getGoup()))
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
there currently is no table to check!");
else if (ImyCreator.getGoup().checkForldentity())
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
it does not have an identity elenment");
else if (I'myCreator.getGoup().checkForlnverse())
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
it does not have an inverse for each elenment");
else if (ImyCreator.getGoup().checklfAssociative())
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
it is not associative");
el se

| Resul t sOF Anal ysi s. set For egr ound(Col or. bl ue);

b
| bl Resul t sOF Anal ysi s. set Text("The table is a group.");

}
}// GEN- LAST: event _checkl f G oup

67

/1 Variabl es declaration - do not nodify//GEN BEG N vari abl es
private javax.sw ng.JButton bt nCheckAbel;
private javax.sw ng.JButton bt nCheckG oup;
private javax.sw ng.JButton bt nCheckNane;
private javax.sw ng.JButton bt nDef Rel nG oup;
private javax.sw ng.JButton btnlnnerAut;
private javax.sw ng.JButton bt nUserDefi nedG oup;
private javax.sw ng.JButton bt nXProdG oup;
private javax.sw ng.JButton btnzZnG oup;
private cayl eytabl e. groupldentify groupNaner;
private javax.sw ng.JLabel |bl GeneratorButtons;
private javax.sw ng.JLabel |bl G oupNane;
private javax.sw ng.JLabel |bl PropertyButtons;
private javax.sw ng.JLabel |bl ResultsO Anal ysis;
private cayl eytabl e. groupCreat or nyCreator;
private cayl eytabl e. groupPanel nyG oup;
/1 End of variables declaration//GEN END: vari abl es
/**

* Bool ean variabl e used by

<CODE>cr eat eDef i nedRel at i onshi pG oup</ CODE>,
* <CODE>cr eat eXPr 0odG oup</ CODE>, and <CODE>cr eat eZnG oup</ CODE>
methods to identify if

* a new group was successfully created.

*/
private bool ean bl nG oupCr eat ed,;

/**

* Met hod used to request the "pseudo"” conmutative defined
rel ati onshi ps
* fromthe user for use in the
<CODE>cr eat eDef i nedRel at i onshi pG oup</ CODE> net hod.
* @aram a Val ue representing one subgroup in rel ationship ba=?? where
?? is the new rel ati onshi p.
* @aramb Val ue representing second subgroup in relationship ba=??
where ?? is the new rel ationship.
* @eturn String object containing the right hand side of the "pseudo”
conmut ati ve rel ationship
*/
public String getNextRel ati onship(int a, int b)
{
String rel ationship = JOpti onPane. show nput Di al og(nul |,
"Enter the relationship for " +
(char) ((char)b+97) + (char)((char)a+97) +
"\'na represents group 1, b represents
group 2, etc." +
"\nAis the inverse of a, Bis the
i nverse of b, etc.",
"Rel ati onshi p Di al og",
JOpt i onPane. QUESTI ON_MESSAGE) ;

int length = rel ationship.length();
if (length < 2) return rel ationship;

for (int i=0; i<length-1; i++)
{

68

for (int j=i+1; j<length; j++)
{
if ((int) relationship.toLowerCase().charAt(i) > (int)
rel ati onshi p.toLower Case().charAt(j))

JOpt i onPane. showMessageDi al og(nul |,
"Error in relationship

order. Muist order elenents " +
"so that letters are in
al phabetical order.",
"Rel ationship Error",
JOpt i onPane. ERROR_MESSAGE) ;
return null;
}
}
}
return rel ati onshi p;
}
/**

* Method used to create the actual cyclic group that is used by
* the <CODE>creat eZnG oup</ CODE> and <CODE>cr eat eXPr odG oup</ CCDE>
nmet hods.
* @eturn Result identifying if a new Cyclic group was successfully
created.
*/
private bool ean createNextCyclicG oup()

{

String ZnOrder String = JOpti onPane. showl nput Di al og(nul I,
"Enter the order for the Cyclic

G oup. ",
"Cyclic Goup Dialog",
JOpt i onPane. QUESTI ON_MESSAGE) ;
int ZnOrder = -1,
try
{
ZnOrder = Integer.parselnt(zZnOrderString, 10);
}

cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul I,
ZnOrderString + " is not a | egal
nunmber!" +
"\nError: " + e.getMessage(),
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
return fal se;

}
if (ZnOrder > 0)

if (!'nyCreator.createCyclicGoup(ZnCrder))

JOpt i onPane. showessageDi al og(nul |,
"Error generating a Z" +
ZnOrderString +
" Goup.\nNO GROUP WAS

GENERATED",
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
return fal se;
}
| bl Resul t sOF Anal ysi s. set Text ("");
return true;
}
el se return fal se;
}
/**

* Method to calculate the factorial of an integer
* @aramn Integer for which the factorial is calcul ated
* @eturn Factorial of n
*/
private int factorial (int n)
{
if (n <=0) return 1;
else return n * factorial (n-1);

}
}
GROUPM AIN.JAVA
/*
* groupMain. java
* Created on January 16, 2005, 1:19 PM

/
package cayl eyt abl e;

i mport javax.sw ng. *;

i mport java.awt.*;

i mport java.awt.event.*;

i mport java.io.*;

i mport java.util.*;

/**
* Main Frane of Cayley table viewer for use when tool is run as a
standl one program See <CODE>groupMai n</ CODE> for identical version
in applet format. User inteface that contains <CODE>gr oupPanel </ CODE>
that displays Cayley Table and buttons to generate and anal yze a
Cayl ey Tabl e.
@ut hor Jeffrey Barr

/

public class groupMi nFrane extends javax.sw ng. JFrane {

* % X X

69

/**

* Initializes the Frame <CODE>groupMai nFranme</ CODE> t hrough call to
initialize all
* of the conponents in the Frane.
*/
public groupMi nFrame() ({
i ni t Components();
set Vi si bl e(true);

}
/**

* This method is called fromw thin the
<CODE>gr oupMai nFr ame() </ CODE>net hod t o
* initialize the form
* WARNI NG Do NOT nodify this code. The content of this nethod is
* al ways regenerated by the Form Editor.
* Code generated via Netbeans.
*/
private void initConmponents() {//CGEN BEG N:i ni t Conponent s
java. awm . & i dBagConstrai nts gri dBagConstraints;

groupNaner = new cayl eyt abl e. groupl dentify();
nmyCreat or = new cayl eytabl e. groupCreator();

| bl G oupNane = new j avax. swi ng. JLabel ();

myG oup = new cayl eyt abl e. gr oupPanel () ;

| bl Resul t sOF Anal ysi s = new j avax. swi ng. JLabel ();
| bl PropertyButtons = new j avax. swi ng. JLabel ();
bt nCheckG oup = new j avax. sw ng. JButton();

bt nCheckAbel new j avax. swi ng. JButton();

bt nCheckNane new j avax. swi ng. JButton();

bt nl nner Aut = new j avax. swi ng. JButton();

| bl Gener at or Buttons = new j avax. swi ng. JLabel ();
bt nZnGroup = new j avax. sw ng. JButton();

bt nXProdG oup = new j avax. sw ng. JButton();

bt nUser Def i nedG oup = new j avax. swi ng. JButton();
bt nDef Rel nGroup = new j avax. swi ng. JButton();

get Cont ent Pane() . set Layout (new j ava. awmt . G i dBagLayout ());

| bl GroupNan®e. set Hori zont al Al i gnnent (j avax. swi ng. Swi ngConst ant s. CENTER) ;
| bl G oupNan®e. set Text (gr oupNaner . get Name()) ;
gri dBagConstraints = new java. awm . & i dBagConstrai nts();
gri dBagConstraints.gridx = O;
gri dBagConstraints.gridy = O;
gri dBagConstraints.gridw dth =
j ava. am . & i dBagConst r ai nt s. REMAI NDER;
gridBagConstraints.fill = java.aw .G idBagConstraints. BOTH,
gri dBagConstraints. wei ghtx = 1.0;
get Cont ent Pane() . add(| bl G oupName, gri dBagConstraints);

gri dBagConstraints = new java. awm . & i dBagConstrai nts();
gri dBagConstraints.gridy = 1;
gri dBagConstraints.gridw dth =

j ava. am . & i dBagConst r ai nt s. REMAI NDER;

71

gridBagConstraints.fill = java.aw .G idBagConstraints. BOTH,
gri dBagConstraints. wei ghty = 1.0;
get Cont ent Pane() . add(myG oup, gridBagConstraints);

| bl Resul t sOF Anal ysi s. set Hori zont al Al i gnnent (j avax. swi ng. Swi ngConst ant s. CEN
TER) ;

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);

gri dBagConstraints = new java. awm . & i dBagConstrai nts();

gri dBagConstraints.gridx = O;

gri dBagConstraints.gridy = 11;

gri dBagConstraints.gridw dth =
j ava. am . & i dBagConst r ai nt s. REMAI NDER;

gri dBagConstraints.fill = java.aw .G idBagConstraints. BOTH,

gri dBagConstraints. wei ghtx = 1.0;

get Cont ent Pane() . add(| bl Resul t sO Anal ysi s, gridBagConstraints);

| bl PropertyButtons. set Hori zont al Al i gnment (j avax. swi ng. Swi ngConst ant s. LEFT)
| bl PropertyButtons. set Text (" Check G oup Properties:");
gri dBagConstraints = new java. awm . & i dBagConstraints();
gri dBagConstraints.gridx = O;
gri dBagConstraints.gridy = 12;
gri dBagConstraints.gridw dth =
j ava. amt . & i dBagConstrai nt s. RELATI VE;
gri dBagConstraints.fill = java.awt .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(| bl PropertyButtons, gridBagConstraints);

bt nCheckG oup. set Text (" Check if G oup");
bt nCheckG oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
checkl f Group(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstrai nts();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.awt .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nCheckG oup, gri dBagConstraints);

bt nCheckAbel . set Text (" Check if Abelian");
bt nCheckAbel . addAct i onLi st ener (new j ava. awt . event . Acti onLi st ener ()

public void actionPerformnmed(java. awt.event. Acti onEvent evt) ({
checkl f Abel i an(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstraints();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nCheckAbel , gri dBagConstrai nts);

bt nCheckNane. set Text ("Fi nd Group Nane");

72

bt nCheckNane. addAct i onLi st ener (new j ava. awt . event . Acti onLi st ener ()

{
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
fi ndG oupNane(evt);
}
1)
gri dBagConstraints = new java. awmt . & i dBagConstrai nts();
gri dBagConstraints.gridy = 13;
gridBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nCheckName, gri dBagConstraints);
bt nl nner Aut . set Text ("Fi nd | nner Aut onorphism');
bt nl nner Aut . addAct i onLi st ener (new j ava. awm . event . Acti onLi st ener ()
{

public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat el nner Aut G oup(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstrai nts();

gri dBagConstraints.gridy = 13;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nl nner Aut, gri dBagConstraints);

| bl Gener at or Butt ons. set Hori zont al Al i gnnent (j avax. swi ng. Swi ngConst ant s. LEFT
)
| bl Gener at or But t ons. set Text (" Choose Type of Goup to Enter:");
gri dBagConstraints = new java. awm . & i dBagConstraints();
gri dBagConstraints.gridx = O;
gri dBagConstraints.gridy = 14;
gri dBagConstraints.gridw dth =
j ava. amt . & i dBagConstr ai nt s. RELATI VE;
gridBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(| bl Gener at or Butt ons, gri dBagConstraints);

bt nZnGr oup. set Text ("Cyclic G oup");
bt nZnGr oup. addAct i onLi st ener (new j ava. awt . event . Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eZnG oup(evt);
}

1)

gri dBagConstraints = new java. awm . & i dBagConstrai nts();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.aw .G idBagConstrai nts. HORI ZONTAL;
get Cont ent Pane() . add(bt nZnG oup, gri dBagConstraints);

bt nXPr odG oup. set Text (" Cross Product G oup");
bt nXPr odG oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eXProdG oup(evt);
}

1)

73

gri dBagConstraints = new java. awmt . & i dBagConstrai nts();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.aw .G idBagConstrai nts. HORI ZONTAL;
get Cont ent Pane() . add(bt nXPr odG oup, gri dBagConstraints);

bt nUser Def i nedG oup. set Text ("User Defined G oup");
bt nUser Def i nedG oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eUser EntryG oup(evt);
}

1)

gri dBagConstraints = new java. awmt . & i dBagConstrai nts();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nUser Def i nedG oup, gri dBagConstraints);

bt nDef Rel nGr oup. set Text (" Defi ned Rel ati onship G oup");
bt nDef Rel nGr oup. addAct i onLi st ener (new
java. aw . event. Acti onLi stener () {
public void actionPerfornmed(java. awt.event. Acti onEvent evt) ({
creat eDefi nedRel ati onshi pGoup(evt);
}

1)

gri dBagConstraints = new java. awmt . & i dBagConstrai nts();

gri dBagConstraints.gridy = 15;

gri dBagConstraints.fill = java.aw .G idBagConstraints. HORI ZONTAL;
get Cont ent Pane() . add(bt nDef Rel nG oup, gri dBagConstraints);

j ava. awt . Di mensi on screenSi ze =
java. aw . Tool ki t. get Def aul t Tool kit (). get ScreenSi ze();
set Bounds((screenSi ze. wi dt h-650)/2, (screenSize. hei ght-700)/2,
650, 700);
}// GEN- END: i ni t Conponent s

/**

* Method to create the groups based upon a defined relationship calls

* the <CODE>groupCreator</CODE> object functionality to create and
store the group.

*

* The group i s nanmed by <CODE>gr oupNaner </ CODE>
<CODE>gr oupl dent i f y</ CODE> obj ect after creation.
* @aram evt Launched by the push of <CODE>bt nDef Rel nG oup</ CODE>.
*/
private void createDefinedRel ati onshi pG oup(java. awm . event. Acti onEvent
evt) {//CEN FIRST: event _creat eDefi nedRel ati onshi pG oup
ArrayLi st<String> generatorlList = new ArraylLi st<String>();
ArraylLi st <gr oupRel ati on> defi nedRel ati onshi ps = new
ArraylLi st <groupRel ati on>();

String def Rel Name = "Group Table: Defined Rel ationship”;

74

/1 Determ ne nunmber of generators to be used and error check that it
is a legal value
String defRel String = JOpti onPane. show nput Di al og(nul |
"Enter the nunber of generators

in the defined rel ati onship. "

"Defined Rel ati onship Di al og",

JOpt i onPane. QUESTI ON_MESSAGE) ;
i nt def Rel NunOf Generators = -1;

i nt nunRel ati onshi ps;
try

def Rel NunOf Generators = | nteger. parselnt(defRel String, 10);

}
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul |,
defRel String + " is not a |egal
i nteger!" +
"\nError: " + e.getMessage(),
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
bl nG oupCreated = fal se;
return;

}

nunRel ati onshi ps = factorial (def Rel NunOf Gener ators);
System out. println("Defining Rel ationships");
i f (defRel NunCX Generators < 2)

JOpt i onPane. showMessageDi al og(nul |,

"You cannot create a defined
relationship with | ess" +

than two groups.”, "Defined
Rel ati onship Error",

JOpt i onPane. ERROR_MESSAGE) ;
bl nG oupCreated = fal se;
return;

}

/1 Determ ne the nunber of elements in each generator
String el ement String;
for (int n=0; n<defRel NuntX Generators; n++)

{
el ement String = JOpti onPane. show nput Di al og(nul I,

"Enter the nunber of
el ements in generator " + n,

"El enent Query Dial og",

JOpt i onPane. QUESTI ON_MESSAGE) ;

/1 Ensure elenent string is an integer
try
{

int tenp = Integer.parselnt(elenentString, 10);
if (temp < 1)
{

75

JOpt i onPane. showMessageDi al og(nul |,
"The order of a generator mnust
be greater than 0!'",
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
n = n-1;
conti nue;

}

cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul |,
elementString +

is not a |legal
i nteger!" +
"\nError: " + e.getMessage(),
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
n = n-1;
conti nue;

}

gener at or Li st . add(el ement Stri ng) ;
def i nedRel at i onshi ps. add(new gr oupRel ati on(n,
I nt eger. parselnt (el emrent String, 10)));

bool ean extraRel ati on
whil e (extraRel ation)

{

true;

String question JOpt i onPane. show nput Di al og(nul I,
"Do you have an extra
rel ati onshi p between generators?\n"

+ " Enter yes/no. ",
"Rel ati onshi p Di al og",

JOpt i onPane. QUESTI ON_MESSACGE) ;
guestion = question.toLowerCase();
i f (question.conpareTo("yes") == 0 || question.conpareTo("y")

{
String rel ationship = JOpti onPane. show nput Di al og(nul |,

"Enter the extra
rel ati onship.",

"Rel ationship
D al og"”,

JOpt i onPane. QUESTI ON_MESSACGE) ;

groupRel ati on extra = new groupRel ation(rel ationshi p,
generatorlList);

bool ean foundMatch = fal se;

for (int i=0; i<definedRel ationships.size(); i++)

{
groupRel ati on tenpRel = (groupRel ati on)

defi nedRel ati onshi ps. get(i);

76

if (extra.getLeft().conpareTo(tenpRel.getLeft())

defi nedRel ati onshi ps.set (i, extra);
foundvat ch = true;

}

}
if (!foundiatch) definedRel ati onshi ps. add(extra);
}

el se
extraRel ation = fal se;

}

for (int i=0; i<defRel NunOXfGenerators-1; i++)

{
for (int j=i+1; j<defRel NunCf Generators; | ++)

def i nedRel ati onshi ps. add(new groupRel ation(j, i,
get Next Rel ati onship(i,j), generatorList));

}

System out. println("Rel ati onshi ps Defined");
for (int j=0; j<definedRel ationships.size(); j++)

{
groupRel ation tenp = (groupRel ation)
defi nedRel ati onshi ps.get(j);
Systemout.println(j +

tenp.getRight());
}

+ tenp.getlLeft() + = +

Systemout. println("Rel ati onshi ps Defined tw ce");
if (myCreator.createDefineRel ati onG oup(gener at orLi st,
def i nedRel ati onshi ps))

nmyG oup. updat eTabl e(nyCreat or. get G oup(), false);
Systemout.println("Attenpting to identify group");
fi ndG oupNane(evt);

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text ("");

bl nG oupCreated = true;

el se

| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. white);
| bl Resul t sOF Anal ysi s. set For egr ound(Col or . RED) ;
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysis. set Text("Error: No Defined Rel ationship
G oup Found");
Systemout. println("No Defined Rel ati onship G oup Found");
bl nG oupCreated = fal se;

}// GEN- LAST: event _cr eat eDef i nedRel at i onshi pG oup

/**
* Method to allow user to enter group of defined order calls
* the <CODE>groupCreator</CODE> object functionality to create and
store the group.
* @aram evt Launched by the push of
<CODE>bt nUser Def i nedG oup</ CODE>.
*/
private void createUserEntryG oup(java. awm . event. Acti onEvent evt)
{// GEN- FI RST: event _creat eUser EntryG oup
String orderString = JOptionPane. show nput Di al og(nul I,
"Enter the size of the group
you would like to create.",
"User Goup Dial og”,
JOpt i onPane. QUESTI ON_MESSACGE) ;
int order = 0;
try
{

order = Integer.parselnt(orderString, 10);
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul |,
orderString +

is not a |legal

i nteger!" +

"\nError: " + e.getMessage(),
"Nunber Error",

JOpt i onPane. ERROR_MESSAGE) ;

return;
}
if (order > 1)
if (!I'nyCreator.createEnptyG oup(order))

JOpt i onPane. showessageDi al og(nul |,

77

"Error generating an enpty group

of order " +
orderString + ".\nNO GROUP WAS
GENERATED",
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
}
myG oup. updat eTabl e(nyCreat or. get G oup(), true);
| bl Resul t sOF Anal ysi s. set Text ("");
}
el se
{

JOpt i onPane. showMessageDi al og(nul |,
"The group order nust be an integer
greater than 1.",
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;
}

| bl G oupNane. set Text ("G oup Table: User Defined");

78

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text("");
}// GEN- LAST: event _creat eUser Ent ryG oup

*

/
Method to create the groups based upon a cross product of at

| east two other groups calls the <CODE>groupCreat or </ CODE> obj ect
functionality to create and store the group.

L

* The group is nanmed by <CODE>gr oupNamer </ CODE>
<CODE>gr oupl dent i f y</ CODE> obj ect after creation.
* @aram evt Launched by the push of <CODE>bt nXProdG oup</ CODE>.
*/
private void createXProdG oup(java. awt.event. Acti onEvent evt) {//CGEN
FI RST: event _cr eat eXPr odG oup
cayl eyt abl e. groupMatri x nmyG oupl
cayl eyt abl e. groupMatri x nmyG oup2

= new cayl eyt abl e. groupMatri x(0);
= new cayl eyt abl e. groupMatri x(0);

String XProdNane = "Group Table: ";

String XProdString = JOptionPane. show nput Di al og(nul I,

"Enter the nunmber of groups in

the cross product. ",
"Cross Product D al og”,
JOpt i onPane. QUESTI ON_MESSACGE) ;

i nt XProdNumOf G oups = -1;
try

XPr odNunmf Groups = Integer. parselnt(XProdString, 10);
cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul |,
XProdString + " is not a |egal
i nteger!" +
"\nError: " + e.getMessage(),
"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;

return;

}

i f (XProdNumOFf Groups <= 1)
{
JOpt i onPane. showMessageDi al og(nul I,
"You cannot create a cross product
with [ess" +
" than two groups.”, "Cross Product
Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}

String choice = JOptionPane. show nput Di al og(nul I,
"Enter 1 if first group is a

Cyclic group, else enter 2 for a Defined Rel ationship. ",
"Cross Product Choice Dial og",

JOpt i onPane. QUESTI ON_MESSAGE) ;

if (choice.equals("1"))
{
i f (createNextCyclicGoup())
XPr odNunmf Gr oups = XPr odNuncf Groups - 1;
el se
return;

el se if (choice.equals("2"))

{
creat eDefi nedRel ati onshi pGoup(evt);
i f (bl nG oupCreat ed)
XPr odNunmf Gr oups = XPr odNuncf G oups - 1;
el se
return;
}
el se
{

JOpt i onPane. showMessageDi al og(nul |,

79

"You must select either a Cyclic group

or defined rel ationship",
"Cross Product Error",
JOpt i onPane. ERROR_MESSAGE) ;

return;

}

whi I e (XProdNunmOf Groups > 0)

{
myG oupl. reset G oup(nyCreator. get Goup());

choi ce = JOpti onPane. show nput Di al og(nul |,

"Enter 1 if next group is a

Cyclic group, else enter 2 for a Defined Relationship. ",

"Cross Product Choice Dial og"
JOpt i onPane. QUESTI ON_MESSACGE) ;

if (choice.equals("1"))
{
i f (createNextCyclicGoup())
myG oup2. reset G oup(nyCreator. get Goup());
el se
return;

el se if (choice.equals("2"))

{
creat eDefi nedRel ati onshi pG oup(evt);
i f (bl nG oupCreat ed)
nmyG oup2. reset G oup(nyCreator. get Goup());
el se
return;
}
el se
{

JOpt i onPane. showessageDi al og(nul |,

"You must select either a Cyclic

group or defined rel ationship"”,

"Cross Product Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}
if (!'nyCreator.createXProdG oup(nmyG oupl, myG oup2))

JOpt i onPane. showMessageDi al og(nul |,
"Error generating a Cross
Product” +
" Goup.\nNO GROUP WAS

GENERATED",
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;
}
XPr odNunmf Gr oups = XPr odNuncf G oups - 1;
}

myG oup. updat eTabl e(nyCreat or. get G oup(), false);
fi ndG oupNane(evt);
bl nG oupCreated = true;
| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text("");
}// GEN- LAST: event _cr eat eXPr odG oup

/**

* Method to create a cyclic group of a user defined size calls the
* <CODE>gr oupCr eat or </ CODE> obj ect functionality to create and store

t he group.
*

* The group i s named by <CODE>gr oupNaner </ CODE>

<CODE>gr oupl dent i f y</ CODE> obj ect after creation.
* @aram evt Launched by the push of <CODE>bt nZnG oup</ CODE>.
*/

private void createZnG oup(java. awt.event. Acti onEvent evt) {//CGEN

FI RST: event _cr eat eZnG oup
if (createNextCyclicGoup())
{
myG oup. updat eTabl e(nyCreat or. get G oup(), false);
fi ndG oupNane(evt);
bl nG oupCreated = true;

}
| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Text ("");
}// GEN- LAST: event _cr eat eZnG oup

/**

80

* Method to call functionality in <CODE>groupCreator</CODE> to create

t he

* inner autonorphismof the current group currently stored in
<CODE>nyCr eat or </ CODE>

* <CODE>gr ouphat ri x</ CODE> obj ect .

*

* The group replaces what is stored i n <CODE>nyG oup</ CODE>
<CODE>gr oupCr eat or </ CODE> obj ect

* and nanmed by <CODE>groupl dentify</CODE> after creation.

* @aram evt Launched by the push of <CODE>bt nl nner Aut </ CODE>.
*/
private void createl nner Aut G oup(java. awt . event. Acti onEvent evt)
{/ 1 GEN- FI RST: event _cr eat el nner Aut G oup
if (!I'nyCreator.reset G oup(nyG oup.get Goup())
|| 'myCreator.getGoup().checkForldentity()
|| !'myCreator.get Goup().checkForlnverse()
|| 'myCreator.getGoup().checklfAssociative())
{
JOpt i onPane. showMessageDi al og(nul I,
"Error generating an |nner
Aut onor phi sni' +
" Goup.\nRequires Initial Legal
G oup",
"I'l'legal G oup Error",
JOpt i onPane. ERROR_MESSAGE) ;
return;

}

if (myCreator.createl nner Aut G oup())

myG oup. updat eTabl e(nyCreat or. get Goup(), false);
fi ndG oupNane(evt);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. white);
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. BLUE) ;
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
if (groupNaner.isldentified())
| bl Resul t sOF Anal ysi s. set Text ("1 nner Aut onor phi sm
+ groupNaner. get Nanme()) ;
el se
| bl Resul t sOF Anal ysi s. set Text ("1 nner Aut onor phi sm
Found: Unknown G oup Name");
Systemout. println("lnner Autonorphism G oup Found");
}

el se

{

Found:

| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. white);
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. RED) ;
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Text("Error: No Inner
Aut onor phi sm Group Found");
Systemout. println("No I nner Autonorphism Goup Found");

}
}/ | GEN- LAST: event _cr eat el nner Aut G- oup

/**

* Method to nanme the group stored in <CODE>nyCreat or </ CODE>
<CODE>gr oupCr eat or </ CODE> object with the

* <CODE>gr oupNaner </ CODE> <CCODE>gr oupl dent i f y</ CODE> obj ect and
di splays the results on

* <CODE>| bl G- oupNane</ CODE> JLabel obj ect.

* @aram evt Launched by the push of <CODE>bt nCheckNane</ CODE>.

*/

private void findG oupNanme(java. awt.event. Acti onEvent evt) {//CGEN

FI RST: event _fi ndG oupNane

81

82

| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl G oupNan®e. set Enabl ed(f al se);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. yel | ow) ;
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. red);
if (!'nyCreator.reset G oup(nyG oup.getGoup()))
| bl GoupNane. set Text ("G oup Table: This is not a Goup");
else if (ImyCreator.getGoup().checkForldentity())
| bl GoupNane. set Text ("G oup Table: This is not a Goup");
else if (I'myCreator.getGoup().checkForlnverse())
| bl GoupNane. set Text ("G oup Table: This is not a Goup");
else if (ImyCreator.getGoup().checklfAssociative())
| bl GoupNane. set Text ("G oup Table: This is not a Goup");
el se

| bl Resul t sOF Anal ysi s. set Enabl ed(f al se);
groupNaner . reset G oupl dentify(nyCreator. get Goup());
| bl G oupNane. set Enabl ed(true);
| bl G oupNane. set Text ("G oup Table: " + groupNaner. get Name());

}
}// GEN- LAST: event _fi ndG oupNane

/**

* Method to determine if the table stored in the
<CODE>ny Cr eat or </ CODE> <CODE>gr oupCr eat or </ CODE>
* object is an Abelian group using the analysis functions that are a
part of <CODE>groupMatri x</ CODE>
* and displays the results on <CODE>| bl Resul t sO Anal ysi s</ CODE>
JLabel object.
* @aram evt Launched by the push of <CODE>bt nCheckAbel </ CODE>.
*/
private void checklfAbelian(java.awt .event.Acti onEvent evt) {//CGEN
FI RST: event _checkl f Abel i an
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. YELLOW ;
| bl Resul t sOF Anal ysi s. set For egr ound(Col or . RED) ;

if (!'nyCreator.reset G oup(nyG oup.getGoup()))
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
there currently is no table to check!");
else if (ImyCreator.getGoup().checkForldentity())
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
it does not have an identity elenment");
else if (I'myCreator.getGoup().checkForlnverse())
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
it does not have an inverse for each elenment");
else if (ImyCreator.getGoup().checklfAssociative())
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
it is not associative");
else if (ImyCreator.getGoup().checklfCommutative())
| bl Resul t sOF Anal ysi s. set Text ("The table is not an Abeliain
G oup because it is not comrunative");
el se
{
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. BLUE) ;
I bl Resul t sOF Anal ysi s. set Text (" The table is an Abelian
G oup.");

83

}
}// GEN- LAST: event _checkl f Abel i an

/**

* Method to determine if the table stored in the
<CODE>ny Cr eat or </ CODE> <CODE>gr oupCr eat or </ CODE>
* object is a group using the analysis functions that are a part of
<CODE>gr oupat ri x</ CODE>
* and di splays the results on <CODE>| bl Resul t sO Anal ysi s</ CODE>
JLabel object.
* @aram evt Launched by the push of <CODE>bt nCheckG oup</ CODE>.
*/
private void checklfG oup(java.aw . event. Acti onEvent evt) {//CGEN
FI RST: event _checkl f G oup
| bl Resul t sOF Anal ysi s. set Enabl ed(true);
| bl Resul t sOF Anal ysi s. set Backgr ound(Col or. yel | ow) ;
| bl Resul t sOF Anal ysi s. set For egr ound(Col or. red);

if (!'nyCreator.reset G oup(nyG oup.getGoup()))
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
there currently is no table to check!");
else if (ImyCreator.getGoup().checkForldentity())
| bl Resul t sOF Anal ysi s. set Text ("The table is not a group because
it does not have an identity elenment");
else if (I'myCreator.getGoup().checkForlnverse())
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
it does not have an inverse for each elenment");
else if (ImyCreator.getGoup().checklfAssociative())
| bl Resul t sOF Anal ysi s. set Text (" The table is not a group because
it is not associative");
el se
{
| bl Resul t sOF Anal ysi s. set For egr ound(Col or . bl ue);
I bl Resul t sOF Anal ysi s. set Text (" The table is a group.");
}
}// GEN- LAST: event _checkl f G oup

/1 Variabl es declaration - do not nodify//GEN- BEG N vari abl es

**
/: JButton object to | aunch <CODE>checkl f Abel </ CODE> net hod.
piivat e javax.sw ng. JButton bt nCheckAbel ;
/: JButton object to | aunch <CODE>checkl f G oup</ CODE> net hod.
pr{vat e javax.sw ng. JButton bt nCheckG oup;

**
/: JButton object to |aunch <CODE>fi ndG oupNanme</ CODE> net hod.
;)iivat e javax.sw ng. JButton bt nCheckNane;

* JButton object to |aunch
<CODE>cr eat eDef i nedRel at i onshi pG oup</ CODE> net hod.
*/

private javax.sw ng.JButton bt nDef Rel nG oup;

**
/* JButton object to | aunch <CODE>cr eat el nner Aut G oup</ CODE> net hod.
*
piivat e javax.sw ng. JButton btnlnnerAut;
/: JButton object to |launch <CODE>creat eUser Ent r yG oup</ CODE> net hod.
piivat e javax.sw ng. JButton bt nUser Defi nedG oup;
/: JButton object to | aunch <CODE>creat eXPr odG oup</ CODE> net hod.
pr{vat e javax.sw ng. JButton bt nXProdG oup;
**
/: JButton object to | aunch <CODE>creat eZnG oup</ CODE> net hod.
?iivat e javax.sw ng. JButton bt nZnG oup;

* <CODE>groupl denti f y</ CODE> object called to deternine the name of
the current
* group that is stored i n <CODE>nyCreat or </ CODE>
<CODE>gr oupCr eat or </ CODE> obj ect and di spl ayed
* in <CODE>nyG oup</ CODE> <CODE>gr oupPanel </ CODE> obj ect .
*/
private cayl eytabl e. groupldentify groupNaner;
/**
* JLabel that describes functionality of
<CODE>bt nDef Rel nGr oup</ CODE>,
* <CODE>bt nUser Def i nedGr oup</ CODE>, <CODE>bt nXPr odG oup</ CODE>, and
<CODE>bt nZnG oup</ CODE>.
*/
private javax.sw ng.JLabel |bl GeneratorButtons;
/**
* JLabel used to display results of <CODE>fi ndG oupNane</ CODE> net hod
with the current
* name of the group displayed i n <CODE>nyG oup</ CCDE>
<CODE>gr oupPanel </ CODE> obj ect .
*/
private javax.sw ng.JLabel |bl G oupNane;
/**
* JLabel that describes functionality of <CODE>bt nCheckG oup</ CODE>,
* <CCODE>bt nCheckAbel </ CODE>, <CODE>bt nCheckNane</ CODE>, and
<CODE>bt nl nner Aut </ CCDE>.
*/
private javax.sw ng.JLabel |bl PropertyButtons;
/**
* JLabel used to display results of <CODE>checkG oup</ CODE>,
<CODE>checkAbel </ CODE>
* and <CODE>cr eat el nner Aut G oup</ CODE> et hods with respect to the
current
* group displayed i n <CODE>nyG oup</ CODE> <CODE>gr oupPanel </ CODE>
obj ect.
*/
private javax.sw ng.JLabel |bl ResultsO Anal ysis;
/**

85

* groupCreator object used to create and store group via the
<CODE>cr eat eDef i nedRel at i onshi pG oup</ CODE>,

* <CODE>cr eat eUser Ent r y&G oup</ CODE>, <CCODE>cr eat eXPr odG oup</ CODE>,
<CODE>cr eat eZnG oup</ CODE>, and <CODE>cr eat el nner Aut G oup</ CODE> net hods.

*

* Also, stores group that is analyzed via the
<CODE>checkl f G oup</ CODE> and <CODE>checkl f Abel i an</ CODE> net hods.
*

* This is the group that is also sent to the <CODE>myG oup</ CODE>
<CODE>gr oupPanel </ CODE> obj ect and
* the <CODE>gr oupNaner </ CODE> <CODE>gr oupl denti f y</ CODE> obj ect for
use in displaying the Cayley Table
* and finding the name of the group via the
<CODE>f i ndG oupNane</ CODE> net hod.
*/
private cayl eytabl e. groupCreat or nyCreator;
/**
* <CODE>gr oupPanel </ CODE> obj ect used for displaying the Cayley Table
that it
* | s passed via a <CODE>groupMatri x</ CODE> obj ect .
*/
private cayl eytabl e. groupPanel nyG oup;
/1 End of variables declaration//GEN END: vari abl es
/**
* Bool ean variabl e used by
<CODE>cr eat eDef i nedRel at i onshi pG oup</ CODE>,
* <CODE>cr eat eXPr odG oup</ CODE>, and <CODE>cr eat eZnG oup</ CODE>
methods to identify if
* a new group was successfully created.
*/
private bool ean bl nG oupCr eat ed,;

/**

* Met hod used to request the "pseudo"” conmutative defined
rel ati onshi ps
* fromthe user for use in the
<CODE>cr eat eDef i nedRel at i onshi pG oup</ CODE> net hod.
* @aram a Val ue representi ng one subgroup in relationship ba=??
where ?? is the new rel ationship.
* @aramb Val ue representing second subgroup in relationship
ba=?? where ?? is the new rel ationshi p.
* @eturn String object containing the right hand side of the
"pseudo” comutative relationship
*/
private String getNextRel ationship(int a, int b)
{
String rel ationship = JOpti onPane. show nput Di al og(nul |,
"Enter the relationship for " +
(char) ((char)b+97) + (char)((char)a+97) +
"\'na represents group 1, b represents
group 2, etc." +
"\nAis the inverse of a, Bis the
i nverse of b, etc.",
"Rel ati onshi p Di al og",
JOpt i onPane. QUESTI ON_MESSAGE) ;

86

int length = rel ationship.length();
if (length < 2) return rel ationship;

for (int i=0; i<length-1; i++)
{
for (int j=i+1; j<length; j++)
{
if ((int) relationship.toLowerCase().charAt(i) > (int)
rel ati onshi p.toLower Case().charAt(j))

JOpt i onPane. showMessageDi al og(nul |,
"Error in relationship
order. Must order elenents " +
"so that letters are in
al phabetical order.",
"Rel ationship Error",

JOpt i onPane. ERROR_MESSAGE) ;
return null;

}
}

return rel ati onshi p;

}

/**
* Method used to create the actual cyclic group that is used by
* the <CODE>creat eZnG oup</ CODE> and <CODE>cr eat eXPr odG oup</ CCDE>
nmet hods.
* @eturn Result identifying if a new Cyclic group was successfully
created.
*/
private bool ean createNext CyclicG oup()

{

String ZnOrder String = JOpti onPane. showl nput Di al og(nul I,
"Enter the order for the Cyclic
G oup. ",
"Cyclic Goup Dial og",
JOpt i onPane. QUESTI ON_MESSAGE) ;
int ZnOrder = -1,

try
{ _
ZnOrder = Integer.parselnt(zZnOrderString, 10);

cat ch (Nunber For mat Excepti on e)

JOpt i onPane. showMessageDi al og(nul |,
ZnOrderString + " is not a |l egal
i nteger!" +
"\nError: " + e.getMessage(),

87

"Nunber Error",
JOpt i onPane. ERROR_MESSAGE) ;
return fal se;

}
if (ZnOrder > 0)
if (!'nyCreator.createCyclicGoup(ZnCrder))

JOpt i onPane. showessageDi al og(nul |,
"Error generating a Z" +
ZnOrderString +
" G oup.\nNO GROUP WAS
GENERATED',
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
return fal se;

}
| bl Resul t sOf Anal ysi s. set Text("");
return true,

}
JOpt i onPane. showMessageDi al og(nul |,

ZnOrderString + " is not a legal integer!\n"
+
" Order of a group nmust be greater than 0",
"Group CGeneration Error",
JOpt i onPane. ERROR_MESSAGE) ;
return fal se;
}
/**
* Method to calculate the factorial of an integer
* @aramn Integer for which the factorial is calcul ated
* @eturn Factorial of n
*/
private int factorial (int n)
{
if (n <=0) return 1;
else return n * factorial (n-1);
}
}
GROUPPANEL .JAVA
/*
* groupPanel . java
*
* Created on January 16, 2005, 1:20 PM
*/

package cayl eyt abl e;

i mport j avax.sw ng.table.*;
i mport java.awt.*;

88

/**

* Extended JPanel object that is used to display the actual Cayley

* Table stored in the <CODE>nmyG oup</ CODE> <CODE>gr oupMat ri x</ CODE>
obj ect and displ ayed as

* via the <CODE>t bl G oupTabl e</ CODE> JTabl e obj ect using the
<CODE>gt mGr oupMbdel </ CODE>

* <CODE>gr oupTabl eMbdel </ CODE> obj ect as the format for view ng.

*

* @uthor Jeffrey Barr

*/
public class groupPanel extends javax.sw ng.JPanel {

/**
* Creates new extended JPanel <CODE>groupPanel </ CODE>
*/
public groupPanel () {
i ni t Components();

*
* This method is called fromw thin the constructor to

* initialize groupPanel.

* WARNI NG Do NOT nodify this code. The content of this nethod is
* al ways regenerated by the Form Editor.

* This code is autogenerated by the Netbeans code.

*

private void initConmponents() {//CGENBEG N:i ni t Conponent s
myG oup = new cayl eytabl e. groupMatri x();
spnG oupTabl e new j avax. swi ng. JScrol | Pane();
t bl G oupTabl e new j avax. swi ng. JTabl e();

set Layout (new j ava. awt . Bor der Layout ()) ;

set Aut oscrol I s(true);

t bl G oupTabl e. set Font (new j ava. awt . Font ("M crosoft Sans Serif", O,
12));

gt nzr oupMbdel = new cayl eyt abl e. gr oupTabl eModel (this);

t bl G oupTabl e. set Model (gt n&r ouphbdel) ;

t bl G oupTabl e. set Aut oResi zeMbde(j avax. swi ng. JTabl e. AUTO_RESI ZE_COFF) ;
t bl G oupTabl e. set Aut oscrol | s(fal se);
t bl G oupTabl e. set RowSel ecti onAl | owed(f al se);
spnG oupTabl e. set Vi ewport Vi em(t bl G oupTabl e) ;
t bl G oupTabl e. get Accessi bl eCont ext (). set Accessi bl eParent (this);

add(spnG oupTabl e, java. awt. BorderLayout. CENTER);

}// GEN- END: i ni t Conponent s

/1 Variabl es declaration - do not nodify//GEN BEG N vari abl es
/**
* <CODE>gr ouphat ri x</ CODE> obj ect used to store the actual Cayley
Tabl e bei ng di spl ayed
* on the panel via the <CODE>tbl G oupTabl e</ CODE> JTabl e obj ect.
*/

89

private cayl eytabl e. groupMatri x nmyG oup;
/**
* JScrol | Pane object used to extend the size of usable space
avai |l abl e
* for the <CODE>t bl GroupTabl e</ CODE> JTabl e obj ect being displayed on
t he user
* interface so that groups of higher order can be displ ayed.
*/
private javax.sw ng.JScrol | Pane spnG oupTabl e;
/**
* JTabl e object used to display the actual Cayley Table stored in
<CODE>ny G oup</ CCDE>
* <CODE>gr ouphat ri x</ CODE> object. Formatting of the table is done
vi a the <CODE>gt niz oupModel </ CODE>.
*/
private javax.sw ng.JTabl e tbl G oupTabl e;
/1 End of variables declaration//GEN END: vari abl es
/**
* Abstract Tabl eModel object used to describe how the group stored in
* <CODE>ny G oup</ CODE> <CODE>gr ouphat ri x</ CODE> obj ect is displ ayed
usi ng the <CODE>t bl GroupTabl e</ CODE> <CODE>JTabl e</ CODE>
* object.
*/
private cayl eytabl e. groupTabl eMbdel gt m& ouphMbdel ;

/**
* Method to update both the <CODE>t bl G oupTabl e</ CODE> JTabl e obj ect
and the
* <CODE>ny G oup</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect with a new
group that is passed in.
* @ar am newlabl e New <CODE>gr oupMat ri x</ CODE> obj ect used to update
obj ects i n <CODE>gr oupPanel </ CODE>
* @ar am nmakeEdi t abl e Bool ean vari able used to determine if
i ndividual cells in the table can be changed manual |y through the user
interface.
*/
public void updat eTabl e(groupMatri x newTabl e, bool ean nakeEditabl e) {
myG oup. r eset G oup(newTabl e) ;
gt n>r oupMbdel . di spl ayTabl e(newTabl e, makeEdit abl e);
Def aul t Tabl eCel | Renderer renderer = new
Def aul t Tabl eCel | Renderer () ;
render er . set Backgr ound(Col or . BLACK) ;
render er . set For egr ound(Col or. YELLOW ;
render er. set Font (new Font (" SansSerif", Font.PLAIN, 12));

t bl G oupTabl e. get Col umMbdel () . get Col um(0) . set Cel | Render er (renderer);
t bl G- oupTabl e. get Tabl eHeader () . set Backgr ound(Col or . BLACK) ;
t bl G- oupTabl e. get Tabl eHeader () . set For egr ound(Col or. YELLOW ;

}
/**
* Met hod used by the user interface to update values in
<CODE>ny G oup</ CODE> <CODE>gr oupMat ri x</ CODE>
* object when individual cells in the <CODE>t bl G oupTabl e</ CODE>

JTabl e object are edited by the user.
* @aramrow Current row in Cayley Table that is to be changed.

* @aramcol Current colum in Cayley Table that is to be changed.
* @aram val ue New val ue to change in the Cayley Table.

*/
public void changeVal uel nG oup(int row, int col, int value) {
myG oup. set Entry(row, col, value);
/**

* Returns the <CODE>nmyG oup</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect
that is

* stored and displayed i n <CODE>gr oupPanel </ CODE>.

* @eturn Current <CODE>nyG oup</ CODE> <CODE>gr oupMat ri x</ CODE>
object that is displayed i n <CODE>groupPanel </ CODE>.

*/

public groupMatrix get Goup() {
return nyGQG oup;

}
}
GROUPTABLEM ODEL .JAVA
/*
* groupTabl eModel . j ava
* Created on January 16, 2005, 2:04 PM

/
package cayl eyt abl e;

i mport javax.sw ng.tabl e. Abstract Tabl eModel ;

i mport javax.sw ng. *;

i mport java.l ang. I nteger;

i mport java.util.*;

/**
* Ext ended Abstract Tabl eMbdel class describing how a group stored in
* a <CODE>gr oupMat ri x</ CODE> object is displayed in a JTabl e object.
* @uthor Jeffrey Barr
*/

public class groupTabl eMbdel extends Abstract Tabl eModel {

/**

* int that contains the current order of the group on display

*/

private int order;

/**

* bool ean that determines if the JTable can be nmanually edited

*/

private bool ean canEdit Tabl e;

/**

* Arraylist of ArraylList of String objects which contains every cell

* in the JTable which is the <CODE>groupMatri x</ CODE> obj ect passed
to the <CODE>groupTabl eMbdel </ CODE>

* constructor.

*/

private ArraylList<ArrayList<String>> tabl eRows;

90

91

/**
* <CODE>gr oupPanel </ CODE> obj ect that contains the JTable that the
current
* instanced of <CODE>groupTabl eMbdel </ CODE> defi nes.
*/
private cayl eytabl e. gr oupPanel topPanel;

/**
* Creates a new i nstance of groupTabl eMbdel with an enpty group of

order O
* @aram i nput Panel groupPanel object which contains the JTable

obj ect
*/
publ i c groupTabl eModel (groupPanel i nput Panel)
{
order = 0;

cankEdi t Tabl e = fal se;
tabl eRows = new ArraylList<ArrayList<String>>();
t opPanel = input Panel ;

}

/**
* Method that fills the colum headers and cells in the JTable with
t he
* newest <CODE>groupMatri x</ CODE> obj ect.
* @aram matri x <CODE>grouphatri x</ CODE> obj ect that contains the
newest group to be displ ayed.
* @ar am nmakeEdi t abl e Bool ean vari able that defines if the newest
group can be manually edited in the JTabl e
*/
public void displayTabl e(grouphMatrix matrix, bool ean nmakeEdit abl e)
{
order = matrix.getOder();
cankEdi t Tabl e = nmakeEdi t abl e;
t abl eRows. cl ear () ;
t abl eRows = new ArraylLi st <ArraylLi st<String>>(order);

for (int row=0; row<order; rowtt)

{
ArrayList<String> tabl eCols = new ArrayLi st<String>(order+1);

whil e (tabl eCols.size() < order+1)
tabl eCol s. add(I nteger.toString(-1));
for (int col =0; col <order+1; col ++)
{
if (col == 0) tableCols.set(col, Integer.toString(row);
el se tabl eCol s.set(col, Integer.toString(
matri x. getEntry(row, col-1)));

}
t abl eRows. add(row, tabl eCols);
}

fireTabl eChanged(null);
}
/**

* Method used to return value to display as col um nane

92

* for a specific colum in the JTable.
* @aramcolum int value of colum name to retrieve
* @eturn Name of col umm based upon position
*/
public String get Col umNane(int col umm)
{
if (colum == 0) return (null);
return Integer.toString(colum-1);

}

/**

* Method to return nunmber of rows in the JTable.
* @eturn int value containing the order of the group being

di spl ayed.
*/
public int get RowCount ()
{
return order;
}
/**

* Method to return nunber of columms in the JTable.
* @eturn int value containing the order of the group + one for each
element in the group and the first columm containing the el ement nanes.

*/

public int getCol umCount ()

{

return (order+1);

}

/**

* Method to set the value of a cell in the JTable as well as resets

* the value of the sane cell in the group stored in
<CODE>t opPanel </ CODE>.

* @aram aVal ue (bject that is the new value of the cell in the
tabl e.

* @aramrow ndex integer containing row of the cell to change in the
JTabl e
* @aram col uiml ndex integer containing colum of the cell to change
in the JTable
*/
public void setVal ueAt ((Obj ect aVal ue, int row ndex, int col umml ndex)

{

try
b _ _
int value = Integer.decode((String) aVal ue).intVal ue();
if (value < 0 || value >= order)
return;
el se
t opPanel . changeVal uel nG oup(r ow ndex, col uml ndex-1,
val ue);
} _
cat ch (Nunber For mat Excepti on e)
{
return;

93

ArrayLi st<String> tabl eCol s;

tabl eCol s = t abl eRows. get (r ow ndex) ;

t abl eCol s. set (col utml ndex, (String) aVal ue);
t abl eRows. set (r owl ndex, tabl eCol s);

/1 Notify table that new data is available for a specific cell
/] Table is then refreshed with this new data.
fireTabl eCel | Updat ed(r ow ndex, col umml ndex);

}
/**

* Method used to return value to display for a specific row, colum
in the JTabl e.

* @aramrow ndex integer containing row of cell in JTable to
retrieve.

* @aram col uml ndex integer containing colum of cell in JTable to
retrieve.

* @eturn Value of cell in JTable that was retrieved

*/

public Object getValueAt(int row ndex, int colummlndex)

{
ArraylLi st tableCols = (ArrayList) tabl eRows. get (row ndex);

if (tabl eCols.get(columlndex) == "-1") return "";
return tabl eCol s. get (col uml ndex) ;
}
/**
* Method to deternmine if a specific cell is editable on the JTable.
* @aramrow ndex integer containing row of cell in JTable to check.
* @aram col uml ndex integer containing colum of cell in JTable to
check.
* @eturn Boolean that determines if cell is editable
*/

public bool ean isCell Editable(int rowl ndex, int col umml ndex)

{
i f (canEditTable)
return (columlndex !'= 0);

return fal se;

}

GROUPRELATION.JAVA

groupRel ati on. j ava

Created on January 17, 2005, 3:29 PM
/

L T

94

package cayl eyt abl e;

i mport java.util.*;
i mport java.io.*;
/**
* Class used to store the relationshi ps between generators of groups
* being created in the
<CODE>gr oupCr eat or . cr eat eDef i neRel ati onG oup</ CODE> net hod.
* @uthor Jeffrey Barr
*/
public class groupRel ation {

/**

* String Object that stores the LHS of the rel ationship equation
*/

String left;

/**

* String Object that stores the RHS of the rel ationship equation
*/

String right;

/**
* Creates a new i nstance of <CODE>groupRel ati on</ CODE> containing a

gener at or

* raised to sone power being equal to the identity element or an
* enmpty RHS.

* @aram generator Generator for which the <CODE>groupRel ati on</ CODE>
i s being created
* @aram genSi ze Order of generator for which <CODE>rel ati on</ CODE>
i s being generated.
*/
public groupRel ation(int generator, int genSize)
{
left = new String("");
right = new String("");

for (int i=0; i<genSize; i++)
{

left = left + Integer.toString(generator, 10);

}
}

/**

* Creates a new i nstance of <CODE>groupRel ati on</ CODE> containing a

* relationship defined conpletely by the user through the user
i nterface.

* @aramrelationship String object that represents the rel ationship
bei ng created.

* @aram generatorlist ArraylList of String objects that are the order
of each of the generators of the group for use in determ ning the inverse
of a generator.

*/

public groupRelation(String relationship, ArrayList generatorlList)

{

left = new String("");

95

right = new String("");
bool ean onLeft = true;

char[] rel Chars = rel ationship.toCharArray();
for (int i=0; i<relationship.length(); i++)

{
int position;
if (relChars[i] =="=") onLeft = false;
else if (relChars[i] ==" ") continue;
else if ((int) relChars[i] >= (int)'a && (int) relChars[i] <=
(int)'z")
{
position = relChars[i] - (int)'a';
if (onLeft)
left = left + Integer.toString(position, 10);
el se
right = right + Integer.toString(position, 10);
}
el se
{
position = relChars[i] - (int)'A;

int size = Integer.parselnt((String)
gener at or Li st. get(position));
for (int j=0; j < size-1; j++4)

if (onLeft)
left = left + Integer.toString(position, 10);
el se
right = right + Integer.toString(position
10);
}
}
}
}
/**

* Creates a new i nstance of <CODE>groupRel ati on</ CODE> cont ai ni ng
* a "pseudo” comutative defined relationship of the group
* @aramgenl Integer representing the first generator in the
"pseudo” comutative defined relationship
* @aram gen2 Integer representing the second generator in the
"pseudo” comutative defined relationship
* @aramrgt String object containing the RHS of the "pseudo”
conmut at i ve defined rel ationship
* @aram generatorlist ArraylList of String objects that are the order
of each of the generators of the group for use in determ ning the inverse
of a generator.
*/
public groupRelation(int genl, int gen2, String rgt, Arraylist
gener at or Li st)
{
left = new String("");
right = new String("");

left = left + Integer.toString(genl, 10);

left = left + Integer.toString(gen2, 10);

char[] rightChars = rgt.toCharArray();
for (int i=0; i<rgt.length(); i++)

{
int position;
if ((int) rightChars[i] >= (int)'a && (int) rightChars[i] <=
(int)'z")
{
position = rightChars[i] - (int)'a";
right = right + Integer.toString(position, 10);
}
el se
{

position = rightChars[i] - (int)"A";
int size = Integer.parselnt((String)
gener at or Li st. get (position));
for (int j=0; j < size-1; j++)
{
right = right + Integer.toString(position, 10);

}

}

/**

* Returns LHS of the <CODE>groupRel ati on</ CODE>.
* @eturn String object containing LHS of relation equation.

*/
public String getLeft()
{
return |eft;
}
/**

* Returns RHS of the <CODE>groupRel ati on</ CODE>.
* @eturn String object containing RHS of relation equation.

*/

public String getRi ght()

{

return right;

}

}
GROUPM ATRIX.JAVA

/*

* groupMatrix.java

*

* Created on January 16, 2005, 8:07 PM
*/

96

97

package cayl eyt abl e;

i mport java.util.*;

/**

* Class used as a storage device for all groups. Stores the Cayley
* table as an ArraylList of ArrayList of Strings where each rowin

* the table is one of the ArrayList of Strings and each cell is
repr esent ed

* by one String. The class also has analysis functions to deternine
* if the Cayley Table has group characteristics such as an ldentity
* element, inverse for each el enment, and associativity.

* @uthor Jeffrey Barr

*/

public class groupMatrix {

/**
* Arraylist of ArraylList of Strings used for storing the Cayley Table
* where each rowin the table is one of the ArraylList of Strings and

* each cell is represented by one String.

*/

private ArraylList<ArrayList<String>> matri xRows;
/**

* Order of the group being stored refers to the nunber of rows and
* columms in the Cayl ey Table.

*/

private int order;

/**

* Creates a new instance of groupMatrix with an enpty Cayl ey Table
* (order 0).

*/

public groupMatrix() {
mat ri xRows = new ArrayLi st<ArrayList<String>>();

order = 0;
for (int row=0; row < order; rowt+)
{

ArrayList<String> matri xCols = new ArrayLi st<String>();
for (int col=0; col < order; col ++)

mat ri xCol s. add("-1");
mat ri xRows. add(matri xCol s) ;

}

/**
* Creates a new instance of groupMatrix with a Cayley Table of a
* specific given order.
* @aramn Order of group to create.
*/
public groupMatrix(int n) {
mat ri XRows = new Arrayli st <ArraylLi st<String>>();
order = n;
for (int row=0; row < order; rowt+)
{
ArrayList<String> matri xCols = new ArrayList<String>();
for (int col=0; col < order; col ++)
mat ri xCol s. add("-1");

98

mat ri xRows. add(matri xCol s) ;

}
}

/**
* Method to update the <CODE>matri xRows</ CODE> and <CODE>or der </ CODE>
of
* the current group with the values froma new
<CODE>gr oupMat ri x</ CODE> obj ect .
* @aramreset <CODE>grouphatri x</ CODE> obj ect that contains new
group to update the current group.
*/
public void reset Goup(cayl eyt abl e. groupMatrix reset)
{
reset Si ze(reset.getOrder());
for (int row=0; row < order; rowt+)

{

for (int col=0; col < order; col ++)

{

setEntry(row, col, reset.getEntry(row, col));

}

/**

* Method to determine if another <CODE>groupMatrix</ CODE> object is
equal to the

* current group stored in this <CODE>groupMatri x</ CODE> i nstance.

* @aram check <CODE>groupMatri x</ CODE> object to conpare to this
i nstance.

* @eturn Bool ean val ue whose result determines if the two groups
bei ng conmpared are equal .

*/

publ i c bool ean i sEqual (cayl eyt abl e. groupMatri x check)

if (order != check.getOrder()) return false;
for (int row=0; row < order; rowt+)
{
for (int col=0; col < order; col ++)
{
if (getEntry(row, col) != check.getEntry(row, col))
return fal se;
}
}
return true;
}
/**
* Method to reset the groupMatrix object to an Cayley Table of a
gi ven
* order filled wth all -1 values.
* @aram size New order of the Cayley Table.
*/
public void resetSize(int size)
{

mat ri xRows. cl ear () ;

99

order = size;
for (int row=0; row < order; rowt+)
{
ArrayList<String> matri xCols = new ArrayLi st<String>();
try {
for (int col=0; col < order; col ++)
mat ri xCol s. add("-1");
mat ri xRows. add(matri xCol s);

}
catch (1 ndexQut O BoundsException e) {

Systemout.println("Error I ndex out of Bounds: " +
e. get Message());
}
}
/**
* Method to set the value of a specific cell in the Cayley Table to

* a given val ue.
@aramrow i nteger containing row of the cell to change in the

Cayl ey Tabl e
* @aramcol integer containing colum of the cell to change in the
Cayl ey Tabl e
* @aram val ue i nteger containing new value of the cell stored in the
Cayl ey Tabl e
*/
public void setEntry(int row, int col, int value)
{
ArrayList<String> matri xCols = matri xRows. get (row);
mat ri xCol s. set(col, Integer.toString(value));
mat ri XxRows. set (row, matri xCol s);
}
/**

* Method to get the value of a specific cell in the Cayley Table.
* @aramrow i nteger containing row of the cell to retrieve in the

Cayl ey Tabl e
* @aramcol integer containing colum of the cell to retrieve in the
Cayl ey Tabl e
* @eturn integer containing value of the cell retrieved fromthe
Cayl ey Tabl e
*/
public int getEntry(int row, int col)
{

ArrayList<String> matri xCol s = matri xRows. get (row);
return Integer.decode((String) matrixCols.get(col)).intValue();

}

/**

* Method to determine if all of the cells in the Cayley Table have a
* value. Does not determine if the values are legal (0 to order-1).
* @eturn Boolean with result of the check

*/

publ i c bool ean checkConpl et e()

{
ArrayLi st<String> matri xCol s;

100

int tenp;
for (int row=0; row < order; rowt+)
{
for (int col=0; col < order; col ++)
{
matri xCol s = matri xRows. get (row) ;
if (matrixCols.get(col) == null) // ||
matri xCol s. get (col) == "-1")
return fal se;
}
}
return true;
}
/**

* Method to return val ue of <CODE>order</CODE> in this instance of
<CODE>gr oupat ri x</ CODE>

* @eturn integer val ue contai ni ng <CODE>or der </ CODE> of the Cayl ey
Tabl e.

*/
public int getOder()
{
return order;
}
/**

* Method to deternmine the identity elenment of the group stored in the
* Cayl ey Table.

* @eturn integer value of the identity el ement

*/

public int findldentity()

if (!checkForldentity()) return -1;

for (int row=0; row < order; rowt+)

{
int col = 0;
while (col < order && getEntry(row, col) == col) col ++;
if (col >= order)
return row,
}
return -1,
}
/**

* Method to return inverse of an elenment in the group
* @aramelenment integer element in group of which to find inverse
* @eturn integer value of the inverse
*/
public int findlnverse(int elenment)
{
int identity = findldentity();
for (int row=0; row < order; rowt+)

{
if (getEntry(row, element) == identity)

101

return row

}

return order+1;

}

/**
* Method to determine if the Cayley Table contains an identity
el ement
* @eturn Boolean result of the check
*/
publ i c bool ean checkForldentity()
{
int columID = -1;
int romMD = -1;

/1 Check for the rowthat is the ldentity;
for (int row=0; row < order; rowt+)

{
/1 Check if the rowreturns it's relative colum position
int col = 0;
while (col < order && getEntry(row, col) == col) col ++;
if (col >= order)
{
rowl D = row,
br eak;
}
}

/1 Check if row ldentity el ement was found
if (romdD < 0) return fal se;

// Find the colum in the zeroth row that returns the val ue of the
zeroth row position
columl D = O;
while (columlID < order && getEntry(0, columlD) != 0)
col umml D++;

/1 1f no colum in the zeroth rowis 0, then there is no identity
colum in the table
if (columml D >= order)
return fal se;

/1 Check the colum on the remaining rows to ensure it is the
identity
for (int row=l; row < order; rowt+)

/1 1f this colum continues to return the current row position
for all rows
/1 continue, else return that there is no true identity colum

if (getEntry(row, columlID) !=row) return false;
}
/! The identity row and col um shoul d be the sane
if (romD == columID) return true;

el se return fal se;

102

}

/**
* Method to determine if all elenents in the Cayley Tabl e have an

* inverse el ement.
* @eturn Boolean result of the check

*/

publ i c bool ean checkForl nverse()

{
int identity = findldentity();
if (identity == -1) return fal se;

/1 Check for the rowthat is the ldentity;
for (int row=0; row < order; rowt+)
{
int inverse = findlnverse(row;
/1 No inverse found for this row value so return false
if (inverse >= order)

{

return fal se;

}

/1 The inverse should work both ways so ensure it does, else
return false
else if (getEntry(inverse,row) != identity)
return fal se;
}

return true;

}

/**
* Method to deternmine if all operations in the Cayley Table are

* associative.
* @eturn Boolean result of the check

*/
publ i c bool ean checkl f Associ ative()
{
for (int x=0; x<order; x++)

{
for (int y=0; y<order; y++)

for (int z=0; z<order; z++)
/1 For associative property check that (x * (y *

z)) = ((x *y) * z)
if (getEntry(x, getEntry(y,z)) !I=
getEntry(getEntry(x,y), z))

}

return fal se;
}
}
return true;

}

/**
* Method to deternmine if all operations in the Cayley Table are
* commut ati ve.

have

* @eturn Boolean result of the check

*/
publ i c bool ean checkl f Commut ati ve()
{
for (int x=0; x<order; x++)
{
for (int y=0; y<order; y++)
{
/1 For communative property check that (x * y)) = (y *
if (getEntry(x, y) !'= getEntry(y, X))
return fal se;
}
}
return true
}
/**
* Method to determine if all rows and colums in the Cayley Tabl e
* uni que elements for each cell in the row or col um.
* @eturn Boolean result of the check
*/

publ i ¢ bool ean checkFor Uni quenessl nRowAndCol ()

/1 Checks that each row never repeats a value within the row
for (int row=0; row<order; rowtt)
{
/1l Get the row and place it into an array
int rowArray[] = new int[order];
for (int col=0; col < order; col ++)
rowArray[col] = getEntry(row, col);

/1 Check that the array does not repeat a val ue
if (!checkArray(rowArray, order)) return false

}

/1 Checks that each col never repeats a value within the co
for (int col=0; col <order; col ++)
{
/1 For each columm, get the value from each row
/1 for that columm and place it into an array
int colArray[] = new int[order];
for (int row=0; row<order; rowtt)

col Array[row] = getEntry(row, col);
}

/1 Check that the array does not repeat a val ue
if (!checkArray(col Array, order)) return false

}

return true;

103

104

*

Met hod to check if a given array has a unique set of elenents that
never repeat.

@aram val ues Array of integers that is being checked.

@aram si ze integer size of array being checked

@eturn Bool ean result of the check

L T R

~

private bool ean checkArray(int[] values, int size)

{
/1l Sort the array
java.util.Arrays. sort(val ues);
/!l Determine if the sorted array repeats any val ues
for (int i=0; i<size-1; i++)
if (values[i] == values[i+1]) return false;
}
return true;
}
}
GROUPCREATOR.JAVA
/*
* groupCreator.java
*
* Created on January 17, 2005, 12:57 PM
*

/
package cayl eyt abl e;

i mport java.util.*;
i mport javax.sw ng. *;
i mport java.awt.*;
i mport java.awt.event.*;
/**
* Class used to create and store a <CODE>gr oup</ CODE> in
<CODE>gr oupMat ri x</ CODE> obj ect .
* @uthor Jeffrey Barr
*/
public class groupCreator ({

/**

* <CODE>gr ouphat ri x</ CODE> obj ect that is created and stored by this
* cl ass.

*/

private cayl eytabl e. grouphMatrix group;

/**

* Constructor that creates a new i nstance of
<CODE>gr oupCr eat or </ CODE> with an enpty

105

* <CODE>gr oup</ CODE> <CCDE>gr oupMat ri x</ CODE> obj ect .
*/
public groupCreator() {
group = new cayl eyt abl e. groupMat ri x(0);
}

/**
* Constructor that creates a new instance of
<CODE>gr oupCr eat or </ CODE> wi t h
* a <CODE>gr oup</ CODE> <CODE>gr ouphat ri x</ CODE> obj ect of specific
order.
* @aramsize Order of enpty <CODE>groupMatri x</ CODE> object to
create

*/
public groupCreator(int size)
{
group = new cayl eyt abl e. groupMatri x(si ze);
}
/**

* Returns <CODE>gr oup</ CODE> <CCDE>gr oupMat ri x</ CODE> obj ect created
by <CODE>gr oupCr eat or </ CODE>.

* @eturn Current <CODE>group</ CODE> <CODE>gr oupMatri x</ CODE> obj ect
created and stored in the class.

*/
public cayl eyt abl e. groupMatri x get G oup()
{
return group;
}
/**

* Resets the <CODE>group</ CODE> <CODE>gr oupMatri x</ CODE> obj ect in
t he cl ass <CODE>gr oupCr eat or </ CODE>
* with a new <CODE>gr oupMat ri x</ CODE> obj ect passed to the nethod.
* @ar am new@ oup <CODE>gr oupMat ri x</ CODE> obj ect that is to replace
t he <CODE>gr oup</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect .
* @eturn Bool ean val ue representing success of updating the
<CODE>gr oup</ CODE> <CCODE>gr oupMat r i x</ CODE> obj ect .
*/
publ i c bool ean reset G oup(cayl eyt abl e. grouphMatri x new& oup)
{
if (group.getOder() !'= new& oup.getOder())
group. reset Si ze(newd oup. get Order());

for (int row=0; row<group.getOrder(); rowtt)

{
for (int col=0; col < group.getOrder(); col ++)
{
group.setEntry(row, col, new& oup.getEntry(row, col));
}
}
return group.checkConplete();

}

/**

106

* Met hod to update <CODE>group</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect
with a new enpty group of

* given order.

* @aram size Order of enpty <CODE>gr oup</ CODE>
<CODE>gr ouphat ri x</ CODE> obj ect to create and store.

* @eturn Bool ean val ue representing success of updating the
<CODE>gr oup</ CODE> <CCODE>gr oupMat r i x</ CODE> obj ect .

*/
publ i c bool ean creat eEnpt yG oup(int size)
{
int order = group.getOder();
if (order != size) group.resetSize(size);
return group.checkConplete();
}
/**

* Met hod to update <CODE>group</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect
with a

* new cyclic group of given order.

* @aram size Order of cyclic <CODE>group</ CODE>
<CODE>gr oupMat ri x</ CODE> obj ect to create and store.

* @eturn Bool ean val ue representing success of updating the
<CODE>gr oup</ CODE> <CCODE>gr oupMat r i x</ CODE> obj ect .

*/
publ i c bool ean createCyclicGoup(int size)
{
int order = group.getOder();
if (order != size) group.resetSize(size);
for (int row=0; row < size; rowtt)
{
for (int col=0; col < size; col ++)
{
group. setEntry(row, col, (rowtcol)%i ze);
}
}
return group.checkConplete();
}
/**

* Met hod to update <CODE>group</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect
with a

* new cross product group that is a conbination of two groups that
are passed

* to the nethod.

* @aram gl First <CODE>grouphatri x</ CODE> obj ect passed to the
met hod for cross product cal cul ation.

* @aram g2 Second <CODE>grouphatrix</ CODE> obj ect passed to the
met hod for cross product cal cul ation.

* @eturn Bool ean val ue representing success of updating the
<CODE>gr oup</ CODE> <CCODE>gr oupMat r i x</ CODE> obj ect .

*/

publ i c bool ean creat eXProdG oup(cayl eytabl e. groupMatrix g1,
cayl eyt abl e. groupMatri x g2)

int x1, x2; /1 positions in gl table
int yl, y2; /1 positions in g2 table

int x,y; /1 results of gl and g2 tables

int size = gl.getOrder() * g2.getOrder();
if (size !'= group.getOrder()) group.resetSize(size);

int[][] cross_prod_set = new int[size][2];

int count = O;

for (int i=0; i < gl.getOrder(); i++)

{
for (int j=0; j < g2.getOrder(); j++)
{

cross_prod_set[count][0]
cross_prod_set[count][1]
count ++;

}

if (count != size) return false;

for (int row=0; row < size; rowtt)

{
for (int col=0; col < size; col ++)
{

x1 = cross_prod_set[row [0];

X2 = cross_prod_set[col][0];

X = gl.getEntry(x1, x2);

y1l = cross_prod_set[row[1];

y2 = cross_prod_set[col][1];

y = g2.getEntry(yl, y2);

bool ean found = fal se;

for (int k=0; k<size && found==fal se; k++)

{
if (x == cross_prod_set[k][0] &&
y == cross_prod_set[k][1])
{
found = true;
group. setEntry(row, col, k);
}
}
if (found !'=true) return false;
}
}
return group.checkConplete();
}
/**

107

* Met hod to update <CODE>group</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect

with a

* new defined relationship group that is defined by relationships and

generators
* that are passed to the nethod.

108

* @aram generatorlist ArraylList of String objects that are the order
of each of the generators of the group.

* @aramrel ationships Arrayli st of <CODE>groupRel ati on</ CODE>
objects that contain the rel ati onshi ps between the generators.

* @eturn Bool ean val ue representing success of updating the
<CODE>gr oup</ CODE> <CCODE>gr oupMat r i x</ CODE> obj ect .

*/

publ i c bool ean createDefi neRel ati onG oup(ArrayLi st<String>

generatorlList, ArrayList<groupRel ation> rel ationshi ps)

{

int size = 1;

for (int i=0; i<generatorlList.size(); i++)
{

size *= Integer. parselnt(generatorList.get(i));

}
if (size !'= group.getOrder()) group.resetSize(size);

ArrayLi st final El enents = createFi nal El ement Li st (generatorlList);
/1 Systemout.println("Final Elements created");

for (int row=0; row<final El ements. size(); rowt+)

{
for (int col=0; col < final El enents.size(); col ++)
{
String tenpWrd = new String((String)
final El ements.get(row) + (String) final El enents.get(col));
/] Systemout.printin("tenpWord =" + tenpWord + "\trow =
+ row + "\tcol =" + col);
bool ean still Reducing = true;
whil e (still Reducing)
{
int k = 0;
bool ean subst Made = fal se;
while (k < rel ationships.size() & (!substMde))
{

groupRel ati on curRel ati on = (groupRel ati on)

rel ati onshi ps. get (k) ;

k = k+1;

int loc =
tempWor d. i ndexOF (cur Rel ati on. getLeft());

StringBuffer tenmpBuffer = new
StringBuffer(tenmpWrd);

if (loc >= 0)

tenmpBuf fer.repl ace(l oc,

| oc+curRel ation.getlLeft().length(), curRelation.getRight());
tempWord = tenpBuffer.toString();
subst Made = true;

}

if (!substMade) still Reducing = fal se;
}

int count = O;

109

bool ean el enent Found = fal se;

/] Systemout. println("Reduced tempWord = " + tenpWrd +
+ row + "\tcol =" + col);

while ((!el enent Found) && count < final El ements. size())

{
String tenpFinal = (String)
final El enents. get(count);
if (tempWord.trim().conpareTo(tenpFinal .trim()) ==

{

group.setEntry(row, col, count);
el enent Found = true;

}

if (!elementFound) count = count + 1;

}
if (!elementFound) return false;
}
}
return group.checkConplete();

"\trow =

0)

}

/**
* Method to determine all the elements of a group given the orders of
* alist of generators of the group being created in
<CODE>cr eat eDef i neRel ati onG oup</ CCDE>
* @aram generatorlist ArraylList of String objects that are the order
of each of the generators of the group.

* @eturn The final list of elenments that conprise the group being
created i n <CODE>cr eat eDef i neRel ati onG oup</ COCDE>
*/

private Arrayli st createFinal El enentList(ArrayList<String>
gener at or Li st)
{
ArrayList<String> final El enents = new ArraylLi st<String>();
int size = generatorlList.size();
String str = new String("");
int gens[] = new int[size];
ArrayLi st <ArrayLi st<String>> el enentMatri x = new
ArrayLi st <ArrayLi st<String>>();

for (int i=0; i<size; i++)
{
str = "";
ArrayLi st<String> el enent Row = new ArrayLi st<String>();
for (int j=0; j < Integer.parselnt(generatorList.get(i)); j++)

el emrent Row. add(str);
str = Integer.toString(i);

el ement Matri x. add(el emrent Row) ;
}

int count = O;
String | astEl enent
String nextEl enent

new String("");
new String("");

110

for (int k=0; k < Integer.parselnt(generatorlList.get(count)); k++)

{
ArrayLi st<String> el enent Row = el enent Matri x. get (count);
next El enent = next El ement + el enent Row. get (k) ;
final Elements = fillList(final El ements, el enentMatrix,
gener at or Li st, nextEl enent, count+1);

}

/1 for (int x=0; x < final El ements.size(); x++)
Systemout.println(x + ":\t" + (String)final El ements. get(x));

return final El enents;

}

/**

* Recursive nmethod used by <CODE>creat eFi nal El enent Li st </ CODE> to
det erm ne

* the final list of elements that are to be

* @aramfinal El ements Current list of all elements that have thus
far been derived for the group.

* @aramel ementMatrix Arraylist of ArraylList of String objects where

* each String is one of the possible elenents derived from one
gener at or

* each ArrayList of Strings is the list of all possible elenents
derived from one generator

* and each ArrayList of ArrayList of Strings is the list of all

possi bl e el enents derived fromone generator for all the generators
* @aram generatorlist ArraylList of String objects that are the order
of each of the generators of the group.
* @aram next El enent Current elenent being built recursively for the
final elenent Iist
* @aram count Nunber of recursive steps that has been run of
<CODE>fi | | Li st </ CODE>
* @eturn The final list of elenments thus far derived for the group
that conprise the group being created in
<CODE>cr eat eDef i neRel ati onG oup</ CCDE>
*/
private ArrayList<String> fillList(ArrayList<String> final El ements,
ArrayLi st <ArrayLi st<String>> el ement Matri x,
ArrayLi st<String> generatorlList, String
next El enent, int count)

if (count >= generatorlList.size())
final El enent s. add(next El enment) ;
el se

{

for (int i=0; i < Integer.parselnt(generatorlList.get(count));

{

ArrayLi st<String> el enent Row = el enent Matri x. get (count);

next El enent = next El ement + el enent Row. get (i) ;

final Elements = fillList(final El ements, el enentMatrix,
gener at or Li st, nextEl enent, count+1);

}

return final El enents;

i ++)

111
}

/**

* Method to calculate and store the inner autonorphi smof the
<CODE>gr oup</ CODE>

* <CODE>gr ouphat ri x</ CODE> obj ect .
* @eturn Bool ean val ue representing success of updating the

<CODE>gr oup</ CODE> <CCODE>gr oupMat r i x</ CODE> obj ect .
*/
publ i c bool ean creat el nner Aut G oup()

{
int order = group.getOder();

ArrayLi st <grouphatri x> i nner G oups = new Arrayli st<groupMatrix>();
i nt inner&GoupCount = 0;

int[] groupPosn = new int[order];
for (int g=0; g<order; g++)
{

bool ean inList = fal se;
cayl eytabl e. groupMatri x tenpG oup =
cr eat el nner Aut Fr onEl enent (g) ;
if (g!=0)
{
for (int i=0; i<innerGoups.size(); i++)
{

cayl eytabl e. groupMatrix listGoup =
i nner G oups. get(i);

if (listGoup.isEqual (tempGoup)) inList = true;
}

}
if (linList)

groupPosn[i nner G oupCount ++] = g;

i nner G oups. add(t enpG oup) ;
}
}

cayl eyt abl e. groupMatri x next Goup = new
cayl eyt abl e. groupMat ri x(i nner G oups. si ze());

for (int row=0; row<inner@ oups.size();

{

r ow++)
for (int col=0; col<innerGoups.size(); col ++)

{
cayl eytabl e. groupMatri x tenpG oup =
cr eat el nner Aut Fr onTwoE!l enment s(gr oupPosn[row], groupPosn[col]);
for (int i=0; i<innerGoups.size(); i++)
{

cayl eytabl e. groupMatrix listGoup =
i nner G oups. get (i);

if (listGoup.isEqual (tempG oup))
{

}

next G oup. setEntry(row, col, i);

112

}

i f (next G oup.checkComplete())
{
group. reset G oup(next G oup) ;
return true;

}

return fal se;

}

/
Met hod to cal cul ate the inner autonorphismof for two el enents of
t he <CODE>gr oup</ CODE> <CODE>gr ouphat ri x</ CODE> obj ect. Each cell
in the group now equal s the val ue of xygy”-1x~-1 where x and y are
the elements and g is current elenment in the cell of the group for
whi ch the inner autonorphismis cal cul at ed.
@aramelmA First integer representing elenment in group for which
t he i nner autonorphismis cal cul ated

* @aramelntB Second integer representing element in group for which
t he i nner autonorphismis cal cul ated

* @eturn <CODE>grouphatri x</ CODE> obj ect that holds the inner
aut onor phi sm for the <CODE>group</ CODE> <CCODE>gr oupMat ri x</ CODE> obj ect .

*/

public cayl eyt abl e. groupMatri x creat el nner Aut Fr omIwoEl enment s(i nt

elnt A int elntB)

* % ok X Ok F X

int order = group.getOder();
cayl eytabl e. groupMatri x tenmpG p = new
cayl eyt abl e. groupMatri x(order);

/] Determine the inverse of the elenent if it exists,
/! else return the enpty group

int invA = -1,

int invB = -1,

int identity = group.findldentity();

if (identity == -1) return tempG p;

for (int i=0; i<order; i++)

if (group.getEntry(elntA, i) == identity)
invA = i;
if (group.getEntry(elntB, i) == identity)
invB = i;
}
if (invA==-11]] invB == -1) return tenpGp;

/1 Create the I nner Autonorphismfor the el enent
for (int row=0; row < order; rowt+)
{
for (int col=0; col < order; col ++)
{
tempG p.setEntry(row, col,
group. get Entry(group.getEntry(el m A, group. getEntry(group.getEntry(el mB,
group.getEntry(row, col)), invB)), invA));
}

}

113

return tenpQ p;
}

*

Met hod to cal cul ate the inner autonorphi smof a single elenment of
t he <CODE>gr oup</ CODE> <CODE>gr ouphat ri x</ CODE> obj ect. Each cell
in the group now equal s the val ue of xgx"-1 where x is the single
element and g is current element in the cell of the group for which
t he i nner autonorphismis cal cul at ed.
@aram el enent Integer representing el enent in group for which the
i nner aut onorphismis cal cul ated
* @eturn <CODE>grouphatri x</ CODE> obj ect that holds the inner
aut onor phi sm group for an el ement.
*/
publ i c cayl eyt abl e. groupMatri x creat el nner Aut Fr onEl enent (i nt el enent)
{
int order = group.getOrder();
cayl eytabl e. groupMatri x tenpG p = new
cayl eyt abl e. groupMat ri x(order);

* % ok Sk X kX

/] Determine the inverse of the elenment if it exists,
/! else return the enpty group
int inverse = -1,
int identity = group.findldentity();
if (identity == -1) return tenmpG p;
for (int i=0; i<order; i++)
{
if (group.getEntry(elenment, i) == identity)
{
inverse = i;
br eak;
}
o
if (inverse == -1) return tenpG p;
/1l Create the I nner Autonorphismfor the el enent
for (int row=0; row < order; rowt+)
{
for (int col=0; col < order; col ++)
{
tempG p. setEntry(row, col,

group. get Entry(group. getEntry(el enent, group.getEntry(row, col)),
i nverse));
}

return tenpQ p;
}

114
GROUPI DENTIFY.JAVA

groupldentify.java

Created on January 16, 2005, 8:00 PM
/

L T

package cayl eyt abl e;

import java.util.*;

/**

* Class used to identify by name the current <CODE>groupMatri x</ CODE>
obj ect that

* it contains.

* @uthor Jeffrey Barr

*/

public class groupldentify {

/**
* <CODE>gr ouphat ri x</ CODE> object that is to be identified.
*/

private cayl eytabl e. groupMatrix identifyMatrix;

/**

* String object containing nane of current <CODE>groupMatri x</ CODE>
obj ect stored
* in the class.

*/

private String nane;

/**

* Bool ean result of the identification routine
*/

private bool ean identified,;

/**
* Creates a new i nstance of <CODE>groupldentify</CODE> with a
<CODE>gr oupMat ri x</ CODE> obj ect
* of order 0 and no nane.
*/
public groupldentify() {
identifyMatrix = new cayl eytabl e. grouphMatri x(0);
String nane = new String("enptyG oup");
identified = fal se;

}

/**
* Method to update the <CODE>i dentifyMatri x</ CODE>
<CODE>gr ouphat ri x</ CODE> obj ect stored in the class as well
* as the nethod to actually identify the group stored in the
<CODE>i dent i f yMat ri x</ CODE> <CODE>gr oupMat ri x</ CODE>
* object.
* @aram nyG oup <CODE>gr oupMat ri x</ CODE> object to be identified
*/
public void reset Goupldentify (cayl eytabl e.groupMatrix nyG oup)

identifyMatrix.reset G oup(nyG oup);

115

int order[] = build_order_array();
ArrayLi st <num order> orderList = build_numorder_arraylList(order);

showCent er Or der s(conput eCenter (), order);
if (isCyclic(order))
{
nane = "Z" + Integer.toString(identifyMatrix.getOrder());
identified = true;

}
el se
if (isTwoPrinme(identifyMatrix.getOrder()))
if (identifyMatrix.getOrder() !'= 4)
name = "D' +
Integer.toString(identifyMatrix.getOder() / 2);
el se
name = "Klein 4";

identified = true;

}
else if (isPrineSqgrd(identifyMatrix.getOrder()))
{
int root = (int)
java.l ang. Mat h. round(j ava. |l ang. Mat h. sgrt (i denti fyMatri x. getOrder()));
nane = "Z" + Integer.toString(root) + " x Z" +
Integer.toString(root);
identified = true;

}
el se
if (identifyMatrix.checklfConmmutative())
nane = identifyAbelianXG oup(order, orderlList);
el se
nane = identifyNonAbel i anG oup(order, orderlList);
}

}
Systemout.print("Orders: ");

for (int j=0; j<orderlList.size(); j++)

num order nyOrders = orderlList.get(j);
Systemout.print("\t" + nyOrders.getOderOElenent() + ": " +
myOr ders. get NunOf El enent s()) ;
}
Systemout.println();

}

/**
* Method to return nane of group stored in

<CODE>i dent i f yMat ri x</ CODE> <CODE>gr oupMat ri x</ CODE> obj ect

* @eturn String containing nanme of the group
*/

public String getNane()

{

}

return nane;

116

/**

* Method to return result of whether the group in
<CODE>i dent i f yMat ri x</ CODE>

* <CODE>gr ouphat ri x</ CODE> obj ect could be identified.

* @eturn boolean result of identification routine.

*/
public bool ean isldentified()
{
return identified,;
}
/**

* Method to determine the order of each of the elenents in the group.
* @eturn Array of integers containing order of all elenments in the

group
*/
private int[] build_order_array()
{
int[] order = newint[identifyMatrix.getOrder()];
int j;
int i =0;
while (i < identifyMatrix.getOder())
{
jo=1
order[i] = 1;
do
{
if (j '=identifyMatrix.findldentity()) order[i] =
order[i] + 1;
j = identifyMatrix.getEntry(i, j);
}
while (j !'=1);
=0+ 1
}
return order;
}
/**

* Method to determi ne the nunber of elenments in the group of each
order.
* @aramorder Array of integers containing order of all elenents in
t he group
* @eturn Arrayli st of <CODE>groupl dentify. nunOr der </ CODE> t hat
contai ns the nunber of elements of a specific order of the group.
*/
private ArrayLi st<num order> build_numorder_arraylList(int[] order)
{
ArrayLi st <num order> orderList = new ArraylLi st <num order>();
for (int x =1; x <= identifyMatrix.getCOrder(); x++)
{
int count = O;
for (int y =0; y < identifyMatrix.getOder(); y++)
if (order[y] == x) count = count + 1;

117

if (count = 0)

{
cayl eyt abl e. groupl denti fy. num order next = new
cayl eyt abl e. groupl denti fy. num order(x, count);
order Li st. add(next);
}

}

return orderlList;

}
/**

* Method to determine if current group is a cyclic group.
* @aramorder Array of integers containing order of all elenments in

t he group
* @eturn Boolean result of check to determine if the group is
cyclic.
*/
private boolean isCyclic(int[] order)
{
for (int i=0; i<identifyMatrix.getOrder(); i++)
if (order[i] == identifyMatrix.getOder())
return true;
}
return fal se;
}
/**

* Method to determine if a given value is prine
* @aramn integer value to check

* @eturn Bool ean result of check for prinme

*/

private bool ean isPrime(int n)

{
int divisor
doubl e max

= 2;
= java.lang. Mat h. sgrt (n);
whil e ((double) divisor <= max) {
if (n %divisor == 0) return fal se;
di visor = divisor + 1,
}

return true;
}
/**
* Method to deternmine if a given value is 2*prine
* @aramn integer value to check
* @eturn Bool ean result of check for 2*prinme
*/
private bool ean i sTwoPrime(int n)
{
if (n %2 ==0) return isPrine(n / 2);
return fal se;

}

118

/**
* Method to determine if a given value is prinen2

* @aramn integer value to check
* @eturn Bool ean result of check for prime”2

*/

private bool ean isPrinmeSqgrd(int n)

{
int root = (int) java.lang. Math.round(java.lang. Math.sqrt(n));
if (n == (root*root)) return isPrinme(root);

return fal se;

}

/**
* Method to determi ne renmai ni ng Abelian groups that have not been
identified
* by the <CODE>i sCyclic</CODE>, <CODE>i sTwoPri me</CODE>, and
<CODE>i sPri meSqr d</ CODE> net hods.
* All remai ning Abelian groups are of the cross product form
* @aramorder Array of integers containing order of all elenents in
t he group
* @aram orderlList ArrayList of <CODE>groupldentify. nunOr der </ CODE>
that contains the nunber of elenments of a specific order of the group.
* @eturn String object containing nane of the Abelian group
*/
private String identifyAbelianXG oup(int[] order, Arraylist<num order>
orderLi st)
{
int max_order = O;
int tenp;
ArraylLi st <factor Type> factors, tenpFactors;
cayl eytabl e. groupl denti fy. factor Type next Fact or, next TenpFact or;
String nane;

for (int i=0; i<identifyMatrix.getOrder(); i++)
if (order[i] > nmax_order) max_order = order[i];

temp = (int) identifyMatrix.getOrder() / max_order;

factors = prinmeFactor(tenp);
nane = new String("");

for (int j=0; j < factors.size(); j++)
{
next Factor = factors.get(j);
i f (nextFactor.getNunO Prinmes() == 1)
nanme = nanme + "Z" +
Integer.toString(nextFactor.getPrine()) +
el se
{
tenmp = nunEl ement sOF Or der (or der Li st
next Factor.getPrinme()) + 1;
tenpFactors = prinmeFactor(tenp);
next TenpFact or = tenpFactors.get(j);

X 5

119

next TenpFact or . get NunOf Pri nes() - 1;
nane + gener at eUni queFact or (next Factor, tenp);

tenp
name

}

nane = name + "Z" + Integer.toString(max_order);
identified = true;
return namne;

}

/**

* Method to deternmine the prinme factorization of a given val ue

* @aramn integer value to factor

* @eturn Arrayli st of <CODE>groupldentify.factor Type</ CODE>
containing prinme factors and the nunber of those prinmes used in the
factorization

*/
private ArraylList<factorType> prinmeFactor(int n)
{
ArraylLi st <factor Type> factors = new Arrayli st<factorType>();
int i = 2;
while (n > 1)
{

cayl eyt abl e. groupl denti fy. factor Type next Factor = new
cayl eyt abl e. groupl denti fy. factorType(i, 0);

/1 if ((n %i) == 0)
/1 {
while (n %i == 0)
{
next Fact or. i ncrement Numcf Pri nes() ;
n=n/.i,
}
/1

i f (nextFactor.get NunOX Prines() > 0)
factors. add(next Factor);

=0+ 1
while (lisPrinme(i)) i =i + 1;
}
return factors;
}
/**

* Method to determ ne the nunber of elenments in a group of a given
order.

* @aram orderList ArrayList of <CODE>groupldentify. nunOr der </ CODE>
that contains the nunber of elenents of a specific order of the group.

* @aramk integer of order to check

* @eturn integer of numer of elenents of the given order

*/

private int nunEl enent sOf Order (ArrayLi st <num order> orderList, int k)

{

cayl eyt abl e. groupl denti fy. num order next Order;

for (int i=0; i< orderList.size(); i++)

120

next Order = orderList.get(i);
if (nextOrder.getOrder O El ement () == k)
return next Order. get NunCf El enent s();
}

return O;

}

/**
* Method to generate remaining factors based upon a specific nunber
of a prinme order
* and a nunber or terms those prinmes should be conbined into.
*
* @ar am next Fact or groupldentify.factorType containi ng next prine
and the nunmber of prinmes that are to be used
* @aramterns integer providing nunber of terms in the cross product
to be returned
* @eturn String object containing elenments of the cross product in
t he nane of the group
*/
private String
gener at eUni queFact or (cayl eyt abl e. groupl denti fy. factor Type nextFactor, int
terns)
{
int[] xTermArray = new int[terns];
int index = terns ;
String nane = new String("");

for (int i=0; i < terms; i++) xTermArray[i] = 1;

for (int j=0; j < nextFactor.getNunmOfPrines(); j++)

{
i ndex = index - 1,
xTermArray[index] = xTernmArray[index] * nextFactor.getPrinme();
if (index == 0) index = ternms;

}

for (int k=0; k < terms; k++)
nane = name + "Z" + Integer.toString(xTermArray[k]) + " x ";

return nane;

}

/**

* Method to determ ne renmai ni ng non-Abelian group nanmes for all
groups of order |ess

* than or equal to 32. WII return error nessage in String and set
<CODE>i dent i fi ed</ CODE>

* to false if nane cannot be determined or order is greater than 32.

* @aramorder Array of integers containing order of all elenents in
t he group

* @aram orderList ArraylList of <CODE>groupldentify. nunOr der </ CODE>
that contains the nunber of elenments of a specific order of the group.

* @eturn String object containing nane of the non-Abelian group

*/

private String identifyNonAbelianG oup(int[] order,
ArrayLi st <num or der > orderList)
{
String nane = new String("");
identified = true;
switch(identifyMatrix.getOder())
{
case 8:
i f (nunEl enent sOF Or der (orderLi st,
nanme = "Quaternion";
el se if (nunEl enent sO Order (orderlList,
name = "D4";
el se {
identified = fal se;
nane = "ERROR - order

4) 6)

4)

8";
}
br eak;
case 12:
i f (nunEl enent sOF Or der (orderlLi st,
name = "D6";
el se if (nunEl enent sOF Order (orderlList,
name = "A4";
el se if (nunEl enent sO Order (orderlList,
name = "<2,2, 3>";
el se {
identified = fal se;
nane = "ERROR - order

2) 7)

3)

3)

12";
}
br eak;
case 16:
i f (nunEl enent sOF Or der (orderlLi st,
nane = "D8",;
el se if (nunEl enent sOF Order (orderlList,
nanme = "Z2 x D4";
el se if (nunEl enent sO Order (orderlList,
name = "Q4";
el se if (nunEl enent sO Order (orderlList,
nanme = "Z2 xo Z8",
el se if (nunEl enent sOF Order (orderlList,
name = "Z2 xi 28",
el se if (nunEl enent sO Order (orderlList,

2) 9)

if (centerlsKleind4(conmputeCenter(),
nane = "Weird2";

el se
nane = "Weirdl";

el se if (nunEl enent sOF Order (orderlList, 4)
if (subG oupsAll Normal ())
nanme = "Z2 x Quaternion";
el se
name =
}

el se {
identified =

"Z4 xo Z4";

fal se;

121

2)

8)

2)

11)

12)

name = "ERROR - order 16";
}
br eak;
case 18:
if ((nunkEl ementsO Order(orderList, 2) == 9) &&
(nunEl enent sOF Order (orderList, 3) == 2))
name = "DO";

else if ((nunEl emrentsOf Order(orderlList, 2) == 9) &&

(nunkl enent sOF Order (orderList, 3) == 8))
name = "((3,3,3;2))";
el se if (nunEl ementsOF Order (orderList, 2) == 3)
nanme = "Z3 x D3";
el se {
identified = fal se;
name = "ERROR - order 18",

}
br eak;
case 20:
i f (nunEl enentsOfF Order (orderlList, 2) == 11)
nane = "D10";
el se if (nunEl ementsOF Order (orderList, 2) == 1)
nanme = "<2, 2, 5>";

el se if (nunEl ementsOF Order (orderList, 2) == 5)
nane = "K-Metacyclic (20)";

el se {
identified = fal se;
name = "ERROR - order 20";

}
br eak;
case 21:
i f (nunEl enment sOF Order (orderlList, 3) == 14)
name = "Z3 xo Z7";
el se {
identified = fal se;
nane = "ERROR - order 21";
}
br eak;
case 24
i f (nunEl enent sOF Order (orderlList, 2) == 13)

name = "D12";

else if ((nunEl emrentsOf Order(orderlList, 6) == 8) &%

(nunkl enent sOF Order (orderList, 2) == 7))

nanme = "Z2 x A4";

el se if (nunEl enment sOF Order (orderlList, 2) == 15)
nane = "Z2 x D6";

el se if (nunEl ementsOF Order (orderList, 2) == 5)
nanme = "Z3 x D4";

el se if (nunEl enmentsOF Order (orderlList, 12) == 12)
nanme = "Z3 x Quaternion";

el se if (nunEl ementsOF Order (orderList, 4) == 8)
nanme = "Z4 x D3";

el se if (nunEl enmentsOF Order (orderList, 4) == 12)
nanme = "Z2 x <2, 2, 3>";

else if ((nunEl emrentsOf Order(orderlList, 2) == 9) &&

(nunkl enent sOF Order (orderList, 3) == 2))
name = "(4,6|2,2)";

122

else if ((nunEl ementsOf Order (orderlList, 2) ==
(nunkl enent sOF Order (orderList, 3) == 8))
name = "S4";
else if ((nunEl ement sOf Order (orderlList, 2) ==
(nunkl enent sOF Order (orderList, 6) == 8))

nane = "<2,3,3>";

el se if (nunEl ementsOF Order (orderlList, 4) ==
nane = "<2,2,6>";

el se if (nunEl ementsOF Order (orderList, 8) ==
nane = "<-2,2,3>";

el se {

identified = fal se;
nane = "ERROR - order 24";

}

br eak;

case 27:

i f (nunEl enent sOF Order (orderlList, 3) == 26)
nane = "(3,3]3,3)";

el se if (nunEl ement sOF Order (orderList, 3) ==
nane = "Weird 27";

el se {
identified = fal se;
nane = "ERROR - order 27";

}
br eak;
case 28:
i f (nunEl enent sOF Order (orderlList, 2) == 15)
name = "D14";
el se if (nunEl ementsOF Order (orderlList, 2) ==
name = "<2,2,7>";
el se {
identified = fal se;
nane = "ERROR - order 28";
}
br eak;
case 30:
i f (nunEl enment sOF Order (orderlList, 2) == 15)

nane = "D15";

el se if (nunEl ementsOF Order (orderList, 2) ==
nane = "Z3 x D5";

el se if (nunEl ementsOF Order (orderlList, 2) ==
nanme = "Z5 x D3";

el se {
identified = fal se;
name = "ERROR - order 30";

}

br eak;

case 32:

showCent er Or der s(conput eCenter (), order);

if (subG oupsAllNormal ()) Systemout.println("All

Nor mal ") ;
el se Systemout.printin("Not Al Normal:"
i f (nunEl enment sOF Order (orderlList, 2) == 23)
name = "Z2 x Z2 x D4 - Hall Senior Numnber
el se if (nunEl ementsOF Order (orderlList, 16) ==
name = "Z16 xo Z2 - Hall Senior Nunber 22

9) &&

1) &&

14)

12)

8)

1)

5)

3)

)

8 for
16)

for Order

123

32",

124

el se if (nunEl ementsOF Order(orderList, 2) == 19 &&
nuntl emrent sOF Or der (orderList, 8) == 8)
name = "Z2 x D8 - Hall Senior Nunmber 23 for Oder 32",

el se if (nunEl enment sOF Order (orderList, 8) == 24)
name = "Hall Senior Nunmber 32 for Order 32";
el se if (nunEl ementsOF Order(orderList, 2) == 15 &&

det er mi nel nner Aut onor phi sn{) . tri (). equal sl gnoreCase("Z2 x Z2 x Z2"))
name = "Hall Senior Nunmber 36 for Order 32";

el se if (nunEl enment sOF Order (orderlList, 2) == 14)
name = "Hall Senior Nunmber 42 for Order 32";
el se if (nunEl ementsOF Order(orderList, 2) == 15 &&

nuntl emrent sOF Or der (orderList, 8) == 8)
nane = "Hall Senior Nunber 44 for Order 32";
else if (nunEl ementsOF Order(orderList, 2) == 11 &&
nuntl emrent sOF Or der (orderList, 4) == 4)
nane = "Hall Senior Nunber 47 for Order 32";

el se if (nunEl ementsOF Order (orderList, 2) == 17)
nane = "D16 - Hall Senior Nunber 49 for Oder 32";
el se if (nunEl ementsOF Order (orderList, 2) == 9)
nane = "Z16 xi Z2 - Hall Senior Nunber 50 for Order 32";
el se if (nunEl enment sOF Order (orderList, 4) == 18)
nane = "<2, 2, 8> - Hall Senior Nunber 51 for Order 32";
el se {
identified = fal se;
nane = "ERROR Unknown group nane - order 32";
}
br eak;
defaul t:

nane = "ERROR - order " +
Integer.toString(identifyMatrix.getOrder());
identified = fal se;

}

return namne;

}

/**

* Method to deternmine the elenents in the group that are the center
of the group. The

* center of the group consists of all elements in the group that
comutes with all of the

* other el enments.

*

* @eturn Arraylist of Integers representing el enents that make up
the center of the group

*/

private ArraylList<Integer> conputeCenter ()

{

ArraylLi st<Integer> center_list = new ArraylLi st<Integer>();
center_list.add(identifyMatrix.findldentity());;
for (int row = 0; row < identifyMatrix.getOrder(); rowtt)

if (row == identifyMatrix.findldentity()) continue;
bool ean conmutes = true;

125

int col = 1;
while (comutes & & col < identifyMatrix.getOder())

if (identifyMatrix.getEntry(row, col) !=
identifyMatrix.getEntry(col, row))
comutes = fal se;
col ++;

i f (comutes)

center_I|ist.add(new Integer(row);
Systemout.println("Center contains: " + row;

}

return center _list;

}

/**

* Method to deternmine if the center elenents in the group correspond
to the Klein-4 group.

*

* @aramcenter _|ist ArrayList of Integers representing elenments that
make up the center of the group

* @aramorder Array of integers containing order of all elenents in
t he group

* @eturn Boolean result of check if center is Klein-4 group

*/

private bool ean centerlsKl ei n4(ArrayLi st<Integer> center_list, int[]
order)

/1 Kl ein-4 group is of order four so nust be only four elenents in
t he center
if (center_list.size() !=4) return false;
I nt eger el enent;
int count = 1;
whil e (count <= 3)
{
el ement = (Integer) center_list.get(count);
if (order[elenent.intValue()] !'= 2)
return fal se;
count = count + 1,

}

return true;

}

/**

* Method to deternmine center elements in the group and their order.

*

* @aramcenter _|ist ArrayList of Integers representing el enments that
make up the center of the group

* @aramorder Array of integers containing order of all elenents in
t he group

*/

private void showCenterOrders(ArraylList<lnteger> center_list, int[]
order)

126

/[1if (center_list.size() '=4) return false;
I nt eger el enent;
Systemout.print("Center: ");
for (int count = 0; count < center_list.size(); count++)
{
el enment = (Integer) center_list.get(count);
Systemout.print("\telnt " + elemrent + ": " +
order[el enent.intValue()]);

Systemout. printlin();
}

/**

* Method to determine if all subgroups of the group are normal.
*

* @eturn Bool ean result of check if all subgroups are nornal

*/
private bool ean subG oupsAl | Nornal ()
{
for (int i=0; i < identifyMatrix.getOrder(); i++)
{
ArraylLi st <l nt eger> sgLi st = generat eSubG oupLi st (i);
if (!'normal (sgList)) return false;
}
return true;
}
/**

* Method to deternmine the elenents in a subgroup that include a
specific el ement.
*

* @aram el ement integer of elenment contained in subgroup
* @eturn Arraylist of Integers representing el enents that make up
the center of the group
*/
public ArraylLi st<Integer> generateSubG ouplLi st (int el enent)
{
ArraylLi st <l nteger> subG oupLi st = new ArraylLi st<Integer>();
subG ouplLi st. add(identifyMatrix.findldentity());;

int tenp = el ement;
while (temp !'= identifyMatrix.findldentity())
{
subG ouplLi st . add(new I nteger(tenp));
tenp = identifyMatrix.getEntry(tenp, elenent);
}

return subG oupli st;

}
/**
* Method to determine if the elenents in a subgroup make up a normal
subgroup. A normal
* subgroup is a group where the subgroup is comutative with all of

the elements in the
* original group.

127

*

* @aram subG oupLi st ArrayList of Integers representing el enents
that make up the center of the group
* @eturn Bool ean result of check if subgroup are nornal
*/
private bool ean normal (ArrayLi st<Integer> subG oupLi st)
{
for (int i=0; i < identifyMatrix.getOrder(); i++)
{
ArraylLi st<lnteger> tenpSet = new Arrayli st<Integer>();
int inverse = identifyMatrix.findlnverse(i);
for (int j=0; j < subGoupList.size(); j++)

I nteger tenpCol = subG oupList.get(j);

int tenpRow = identifyMatrix.getEntry(i,
tenmpCol . i ntVal ue());

tenpSet . add(new I nteger (identifyMatrix. get Entry(tenpRow,
i nverse)));

}

for (int k=0; k < subGoupList.size(); k++)
{
bool ean i nSet = fal se;
for (int t=0; t<tenpSet.size(); t++)
if (tenmpSet.get(t).intValue() ==
subG oupLi st.get(k).intValue()) inSet = true;
if (linSet) return false;
}

}

return true;

}

/**

* Method to determ ne the inner autonorphi smof the group being
identified.

*

* @eturn String Nane of inner autonorphism

*/
private String determ nel nner Aut onor phi sm()
{
groupCreator |ocal Creator = new groupCreator();
| ocal Creator.reset Goup(identifyMatrix);
if (local Creator.createl nner Aut Goup())
{
groupl dentify innerAut Name = new groupldentify();
i nner Aut Nane. reset G oupl denti fy(Il ocal Creator. get Goup());
if (innerAutNane.isldentified())
return innerAut Name. get Nane() ;
return null;
}
/**

* Class used to store el enent orders and the nunber of el enents of
t hat order

128

*/
private class num order
{
/**
* integer order of elenents to be stored
*/
private int order O El enment;
/**
* integer nunber of elenments that have the associated order
*/

private int nunCfEl enents;

/**

* Constructor for the class that saves an order val ue and nunber of
val ues of that order

* @aram order integer order to be stored

* @aram numinteger nunber of elenments of order to be stored

*/

public numorder(int order, int nun

order O El enent = order;
nuntf El enents = num

}

/**

* Returns the order
* @eturn integer value of the order

*/
public int getOrder O El enment ()
{
return order O El enent ;
}
/**

* Returns the nunmber of elenents
* @eturn integer value of the nunber of elenents

*/
public int get Nuntf El ement s()
{
return nuncf El enents;
}
}
/**
* Class to store a prinme and nunber used of a prinme factorization
*/
private class factorType
{
/**
* Prime fromthe prime factorization
*/
private int prine;
/**

* Nunmber of primes used in the prinme factorization
*/

129

private int nunmOf Prines;

/**

* Constructor for the class that saves a prinme and nunber of val ues
of that prime used in the prinme factorization

* @aramp integer value of the prine

* @aram numinteger value of the nunber of prines in the
factorization

*/
public factorType(int p, int nun
{
prime = p;
nuntf Prines = num
}
/**

* Returns the prine
* @eturn integer value of the prine

*/
public int getPrime()
{
return prine;
}
/**

* Returns the nunber of times the prine is used in the prine
factorization
* @eturn integer value of the nunber of times the prinme is used

*/
public int get NunOf Prinmes()
{
return nuncf Prines;
}
/**
* Increments the val ue of <CODE>nunCX Pri nes</ CODE> by 1
*/
public void increment NuntX Primes()
{
nunmof Primes = nunOf Prinmes + 1,
}

}

GROUPPERMUTATION.JAVA

groupPer mut ati on. j ava

Created on February 6, 2005, 10:29 PM
/

L T

130

package cayl eyt abl e;

i mport java.util.*;

/**

* Class used to determ ne the nunber of pernutations of a particular
or der

* that forma legal group where the identity elenent is always O.

*

* @uthor Jeffrey Barr

*/

public class groupPernutation {

i nt groupCount;
private cayl eytabl e. groupldentify groupNaner;
private cayl eytabl e. groupMatri x nmyG oup;

/** Creates a new i nstance of groupPernutation */
public groupPernutation() ({

Systemout.println("Deternmine all of the permutations that are
groups for order n");

Systemout.println("There are a total of n!”n permutations");

int n =7,

myG oup = new cayl eytabl e. groupMatri x(n);

groupNaner = new cayl eyt abl e. groupl dentify();

gr oupCount 0;

ArraylLi st <Per nut ati onGener at or > nyPer n3ens = new
ArraylLi st <Per nut ati onGener at or >() ;
for (int i=0; i<n; i++)

{
Per mut at i onGener at or myPer n3en = new Per nmut at i onGener at or (n);
nmyPer nens. add(nyPer nfzen) ;
}
long total = (long) java.lang. Math. powfactorial (n-1), n-1);
Systemout.println("Total =" + total + " possibilities");

det er m nePer nut ati onAndSol ve(myPer mGens, n);

Systemout. println("Goup Count = + groupCount +
" possibilities");

" out of " +

total +

}

private void
det er m nePer nut ati onAndSol ve(ArraylLi st <Per mut at i onGener at or > nyPer nGens,

int n)
{

i f (n==nyG oup.getOrder())

{
for (int i=0; i<nyGoup.getOder(); i++)

myG oup. setEntry(0, i, i);

det er m nePer nut ati onAndSol ve(myPer mGens, n-1);
return;

131

Per mut at i onGener at or myPG = nyPer nzens. get (n-1);
whi l e (nmyPG hashMre())
{
int[] indices = nmyPG get Next ();
if (indices[0] < nyGoup.getOder()-n)
conti nue;
if (indices[0] > nyGoup.getOder()-n)
br eak;

for (int i=0; i<indices.length; i++)

myG oup. set Entry(nyG oup. getOrder()-n, i, indices[i]);
if (repetitionCheck(nyG oup.getOrder()-n)) continue;
if (n-1 > 0) determ nePernutati onAndSol ve(myPer nens, n-1);

el se
{
if (myGoup.checkForldentity() &&
myG oup. checkFor |l nverse() &&
nmyG oup. checkl f Associ ati ve())
{

gr oupCount ++;

gr oupNaner . reset G oupl denti fy(nyG oup) ;

Systemout. println("Found Goup " + groupCount + "
+ groupNaner. get Name()) ;

for (int row=0; rowmyG oup.getOrder(); rowt+)

{
for (int col=0; col<myG oup.getOrder(); col ++)
{
Systemout.print("\t" + nmyGoup.getEntry(row,
col));
}
Systemout.println();
}
}
}
}
nyPG reset () ;
}
private bool ean repetitionCheck(int currentRow)
{

int total Rows = myG oup. get Order();
if (currentRow == 0) return false;
[1if (myGoup.getEntry(currentRow, 0) != currentRow) return true;
for (int col=0; col<total Rows; col ++)
{
for(int row=0; row<currentRow 1; rowt+)
if (myGoup.getEntry(row, col) ==
myG oup. get Entry(current Row, col)) return true;

return fal se;

}

private int factorial (int n)

{

132

if (n <=0) return 1;
else return n * factorial (n-1);

}
public static void main(String[] args) {

/1 TODO code application |logic here
groupPermut ati on gp = new groupPernmut ati on();

PERMUTATIONGENERATOR.JAVA

Per mut at i onGener at or. j ava

Source Code taken from http://ww. merrianpark. conl perm htm
Created on February 4, 2005, 4:15 PM
/

* % ok X X %

package cayl eyt abl e;

i mport j ava. mat h. Bi gl nt eger;

/**
* Class used to create pernmutations of a set of nunbers fromO to n-1
* @uthor {@ink http://ww. merrianpark. com perm ht nt
*/

public class PermutationGenerator ({

/**

* array of integers representing current permutation that is being sent
back to requestor

*/

private int[] a;

/**

* Biglnteger of the nunber of permutations that have not been retrieved

*/

private Biglnteger nunlLeft;

/**

* Biglnteger of the total nunber of permnutations

*/

private Biglnteger total;

/**

* Constructor to create the initial pernutation of the list of integers
from

* 0 to a given nunber.

* WARNI NG Don't make n too |arge

* Recall that the nunmber of pernmutations is n

* which can be very large, even when nis as small as 20 --

* 20! = 2,432,902, 008, 176, 640, 000 and

* 21! is too bigto fit into a Java long, which is

* why we use Biglnteger instead.
*
*

@aramn integer size of the array to pernutate

133

*/
public PernutationGenerator (int n) {
if (n<1) {
t hrow new ||| egal Argunment Exception ("Mn 1");
}
a =newint[n];
total = getFactorial (n);
reset ();
}
/**

* Method to reset the permutation list to the original array
*

*/
public void reset () {

for (int i =0; i < a.length; i++) {

a[i] =i;

}

nunieft = new Biglnteger (total.toString ());
}
/**

* Method to return nunber of pernutations not yet generated
*
* @eturn Biglnteger value of the nunber of pernutations |eft
*/
public Biglnteger getNunmieft () {
return nunieft;
}

/**
* Method to return total nunber of permutations
*
* @eturn Biglnteger value of the total nunber of pernutations
*/
public Biglnteger getTotal () {
return total;
}

/**

* Method to return whether any nore pernmutations are left to use

* @eturn Bool ean value determning if <CODE>nunieft</CODE> is greater
than zero

*/

publ i c bool ean hasMre () {

return nunLeft. conpareTo (Biglnteger.ZEROQ == 1;
}

/**

* Method to conpute the factorial of a given integer
*

* @aramn integer to which conpute the factori al

* @eturn Biglnteger factorial of the given val ue
*/

private static Biglnteger getFactorial (int n) {

134

Bi gl nteger fact =
for (int i =n; i

fact = fact.mult
}

return fact;

}
/**

* Method to generate next pernutation (algorithmfrom Rosen p. 284)

*

* @eturn integer array containing next pernutation of list of integers
fromO to n-1

*/

Bi gl nt eger . ONE;
>1; i--) {
iply (new Biglnteger (Integer.toString (i)));

public int[] getNext () {

if (nunmLeft.equals (total)) {
nunieft = nunmieft.subtract (Biglnteger.ONE);
return a;

}

int tenp;

/1l Find largest index j with a[j] < a[j +1]
int j =a.length - 2;

while (a[j] > a[j+1]) {

}J ;

/1 Find index k such that a[k] is smallest integer
/1 greater than a[j] to the right of a[j]

int kK =a.length - 1;
while (a[j] > a[k]) {

}

/1 Interchange a[j] and a[K]

temp = a[k];
alk] = a[j];
a[j] = tenp;

/1 Put tail end of permutation after jth position in increasing order

int r
int s

a.length - 1;
L

while (r >s) {

temp = a[s];
a[s] = a[r];
a[r] = tenp;
.

135

nunieft = numieft.subtract (Biglnteger. ONE);
return a;

ABSTRACT OF THE THESIS

Computational Tools for Group Theory
by
Jeffrey H. Barr
Master of Science in Computer Science
San Diego State University, 2005

This thesis describes the refinement and extension of code that was originally devel oped
as part of a 1987 Math 797 project by David Gibbs, “Computer Generation and Identification of
Groups of Order 2to 31.” The purpose of the code was to generate, identify, and analyze groups
presented in the form of a Cayley Table. Gibbs' code was transferred from Pascal to Java.
Objects were created to improve the code design and alow for better interaction between the
generation, identification, analysis, and visualization sections of code.

The code for this thesis allows cyclic groups to easily be generated, along with groups
created via defined relationships and the cross product of multiple groups. A user interface was
added to the system to assist the user when utilizing the code as well as visualizing the groups
that are generated. Functionality to allow a user to manually enter a Cayley Table for analysis
was also added to the system.

The generation code is no longer limited to groups of order lessthan 31. Improvements
were made to the identification code so that the system can identify all Abelian groups including
those created via the cross product of groups. Additionally, many non-Abelian groups of order
32 were added to the list of groups which could be identified.

Analysis functionality was added including the identification of whether atable actually
represents a group as well asif the group is Abelian. Also, functiondity was added to calculate
the inner automorphism group of the group being displayed. The analysis functionality will
provide users the ability to analyze groups that the code cannot yet identify.

