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ABSTRACT OF THE THESIS

Computational Tools for Group Theory
by

Jeffrey H. Barr
Master of Science in Computer Science

San Diego State University, 2005

This thesis describes the refinement and extension of code that was originally 
developed as part of a 1987 Math 797 project by David Gibbs, “Computer Generation and 
Identification of Groups of Order 2 to 31.” The purpose of the code was to generate, 
identify, and analyze groups presented in the form of a Cayley Table.  Gibbs’ code was 
transferred from Pascal to Java.  Objects were created to improve the code design and allow 
for better interaction between the generation, identification, analysis, and visualization 
sections of code. 

The code for this thesis allows cyclic groups to easily be generated, along with groups 
created via defined relationships and the cross product of multiple groups.  A user interface 
was added to the system to assist the user when utilizing the code as well as visualizing the 
groups that are generated.  Functionality to allow a user to manually enter a Cayley Table for 
analysis was also added to the system.  

The generation code is no longer limited to groups of order less than 31.  
Improvements were made to the identification code so that the system can identify all 
Abelian groups including those created via the cross product of groups.  Additionally, many 
non-Abelian groups of order 32 were added to the list of groups which could be identified.

Analysis functionality was added including the identification of whether a table 
actually represents a group as well as if the group is Abelian.  Also, functionality was added 
to calculate the inner automorphism group of the group being displayed.  The analysis 
functionality will provide users the ability to analyze groups that the code cannot yet identify.
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CHAPTER 1

INTRODUCTION

The purpose of this thesis was to refine and extend the capabilities of a 1987 Math 

797 project by David Gibbs, “Computer Generation and Identification of Groups of Order 2 

to 31.”  The code was transferred from Pascal to Java in order to ease the addition of a user 

interface that could be turned into an applet.  The user interface was added to aid in 

visualizing the groups as a Cayley table as well as to assist the user when utilizing the code to 

generate and analyze groups.  Also, Java enabled the ability to make the code object oriented 

so that it could be easily extended and different objects could be used in other future 

applications. The code to generate groups was made more flexible in order to enable 

generation of groups with orders greater than 31 including defined relationship groups 

utilizing more than four generators.  Furthermore, the code can now identify all abelian 

groups including those created via the cross product of groups, while many non-abelian 

groups of order 32 were added to the list of non-abelian groups which could be identified.  

Finally, additional functionality was added to the code in order to allow for further analysis 

of groups that are entered into the system.

The code utilizes a groupMatrix object that contains a container class that holds the 

actual group as an array of values similar to a Cayley table.  In addition, the methodologies to 

analyze the group are also contained in the groupMatrix class.  Utilizing this single class 

allowed the code to transfer an object that would contain the group from the generator object 

(groupCreator) to both the user interface object (a JTable defined by an AbstractTableModel 

extension groupTableModel) and the identifier object (groupIdentify).  Further discussion of 

the code, as well as how to use the system, will be provided in the User Interface and Code 

Description chapters.



2

According to Gibbs, there are 92 groups of order 2 to 31 through isomorphism. There 

are an additional 51 groups of order 32, 44 of which are non-abelian.1 Gibbs was able to 

classify or identify all groups of order 2 to 31 up to isomorphism when the identity of the 

group was element 0.  However, Gibbs’ code did not first determine if the Cayley Table that 

was entered represented an actual group before attempting to identify the group.  Further 

description of Gibbs’ method of generating and identifying groups will occur in the History 

chapter, while description of changes to Gibbs’ methods is given in the Code Description 

chapter.

Some of the additional functionality added to the code included the ability for a user 

to enter a Cayley table, and functions to determine if a table was a group and if a group was 

Abelian.  Also, functionality was added to determine characteristics of a group including the 

inner automorphisms of a group. How this new functionality works is described in the User 

Interface and Code Description chapters.

  
1 Marshall Hall, Jr and James K. Senior, The Groups of Order 2n (n<=6), (New York: Macmillan, 1964), 

2.
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CHAPTER 2

BASIC GROUP THEORY

There are four characteristic properties that a nonempty set of elements G must have 

in order to be group under a specific binary operation • (e.g. multiplication or addition):

1. Associativity. For all a, b, c in G, (a• b) • c = a• (b• c).

2. Identity. There is an element λ∈G such that aλ = λa = a for all a ∈G.
3. Inverses.  For each element a in G, there is an element b in G (called an inverse of a) 

such that ab = ba = λ.2

Finite groups are groups that have a finite number of elements.  The number of elements is 

the order of the group and is labeled |G|, where G is the group.  Each element g in a group G 

also has an order, |g|, equal to “the smallest positive integer n such that gn = λ”.3 For a group 

to be considered Abelian, all elements must commute with all other elements in group; that 

is, ab = ba for all a and b in G.

A subgroup of a group G is a subset of elements of G that form a group using the 

same binary operation as G.  Both the sets containing just the identity element λ, and the 

entire set of elements in G are subgroups of G. A subgroup H is a normal subgroup of G if 

all the elements in G, commute with the subgroup or xH=Hx for all x∈G, while the center of 

G, Z(G), is the set of all elements in G that commute with all other elements in G or {a∈G | 

ax=xa for every x∈G}.4 Note, the center of an Abelian group is the group because every 

element commutes with all of the other elements.

A Cayley Table, or multiplication table, is a method for displaying a group and the 

result of operations on the elements.  The table consists of n rows and columns, where n is 

the order of the group and each column and row represents an element.  The first row and 

column each represent the first element; the second row and column represent the second 
  

2 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 43.
3 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 58.
4 Jimmie Gilbert and Linda Gilbert, Elements of Modern Algebra, 5th ed. (Pacific Grove, CA:  Brooks 

Cole, 2000), 122, 130, 178.
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element, etc.  Each cell in the Cayley Table represents one of the possible operations in the 

group where the result of the binary operation (row element • column element) is in the cell.  

Since the operations in a group are closed, all cells are filled with elements of the group.  

Also, since a group is not necessarily commutative, the result of (row element • column 

element) does not necessarily equal (column element • row element).

A group G is a cyclic group “if there is an element a in G such that { }ZnaG n ∈= | .”5  

Element a is called a generator of G and |a|=|G|.  The group generated by a is <a>.  The sets 

of the form {0, 1, ..., n-1} are all cyclic groups under the binary operation addition modulus 

n.  These groups are usually written Zn, where n is also the order of the group.  A group Zn

can have many generators, but they each form the same group.  For example the group Z6 has 

two elements that are generators, element 1 and element 5, where element 5 utilizes addition 

modulus 6 to create the set {0, 5, 4, 3, 2, 1} which is identical to the set created by element 

one {0, 1, 2, 3, 4, 5}.

When there are two groups G and H which may or may not have the same binary 

operation, a function φ: HG → is a homomorphism from G to H such that φ(ab) = φ(a)φ(b) 

for all a and b in G.  When the homomorphism is one-to-one and onto, or bijective, the 

homomorphism is called an isomorphism from HG → , G and H are said to be isomorphic.  

In order to prove two groups G and H are isomorphic, there are four requirements: 6

1. Mapping: there is a function φ from HG → .

2. One-to-one: if φ(a) = φ(b), then a = b.

3. Onto: for any element h∈H, there is an element g∈G such that φ(g) = h.

4. Οperation Preserving:  φ(ab) = φ(a) φ(b) for all a, b∈G
The use of isomorphisms is useful in studying groups because groups that look very 

different can still be isomorphic, allowing them to be described by the same group. In fact 

the two groups shown in the Cayley Tables in Figure 1 are both isomorphic to Z2 and only 

differ in their respective identity element.

  
5 Jimmie Gilbert and Linda Gilbert, Elements of Modern Algebra, 5th ed. (Pacific Grove, CA:  Brooks 

Cole, 2000), 128.
6 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 120.
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Figure 1. Cayley tables for Z2.

An automorphism is an isomorphism of a group G onto itself.  The set of all 

automorphisms of a group G form a group that is referred to as Aut(G) = {φ:  GG → | φ is 

an isomorphism}.  For some element a in group G, conjugation by a of element b∈G is a

mapping φa(b)=aba-1.  φa is a particular automorphism of G induced by a because it is a 

mapping of G onto itself and has a special name, inner automorphism. The set of all inner 

automorphisms of a group G form a group that is referred to as Inn(G) and is a normal 

subgroup of Aut(G). Also, for any group G, Inn(G) ≅ G/Z(G).   Therefore, since the center of 

an Abelian group is the group, Inn(G) ={λ} or Z1 for an Abelian group G.7

  
7 Charles Lanski, Concepts in Abstract Algebra, (Belmont, CA: Brooks Cole, 2005), 239-240.
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CHAPTER 3

FINITE ABELIAN GROUPS

The groups that were identified in the code can be separated into two basics sections, 

Abelian and non-Abelian groups.  The code is able to use the order of the elements of the 

group to identify the cyclic elements because if an element of a group is the order of the 

group it must be the generator of the group and the group is cyclic.  The other two 

fundamental routines used to identify groups of order 2*p and p2 are based upon the 

uniqueness of the order of the groups and the fact that only a specific group, other than the 

cyclic group, could be of that order.  However, all of the groups identified by the cyclic, 2*p, 

and p2 methodologies could have been identified utilizing the remaining techniques.  

The remaining groups were separated based upon whether they were Abelian.  The 

identification methods for the remaining Abelian groups utilize the Fundamental Theorem of 

Finite Abelian Groups:

Every finite Abelian group is the direct product of cyclic groups of prime-power 
order.  Moreover, the number of terms in the product and the orders of the cyclic 
groups are uniquely determined by the group.8

Note that this theorem includes the cyclic groups because the cyclic groups are all finite 

Abelian groups.  In fact, the direct product of cyclic groups is a cyclic group if the orders of 

the cyclic groups are relatively prime.  Also, the direct product in this definition is the same 

as the cross product used to generate groups in the code where ⊕ is used in this document to 

represent the direct or cross product.  A group of prime power order can be written Zp
n where 

p is some prime taken to the power of n.  

The power of the Fundamental Theorem is its application to the construction of all 

Abelian groups of a specific order.  Firstly, for all Abelian groups of the order pk, there 

would only be one group for each set of positive integers which sum k: 

that is, if k can be written as

  
8 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 211.
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k = n1 + n2 + … + nt

where each ni is a positive integer; then 

tnnn ppp
ZZZ ⊕⊕⊕ L21

is an Abelian group of order pk.9

Secondly, the uniqeness portion of the Fundamental Theorem guarantees distinct 

isomorphism classes such that Z4 ⊕ Z3 is not isomorphic to Z2 ⊕ Z2 ⊕ Z3 even though both 

groups are of order 12.  This leads to the next observation that the number of isomorphisms 

of Abelian groups is directly related to the prime factorization of the order of the group.  

Thus, through the determination of the prime factorization of the order of a group, the 

number of Abelian groups of that order can be determined.  For example, the prime 

factorization of 24 is 23 * 31 and these numbers can only be combined in three methods, 

while the prime-power order requirement is maintained and the total value of the 

combination equals 24.  Thus, the only possible Abelian groups of order 24 are 38 ZZ ⊕ , 

324 ZZZ ⊕⊕ , and 3222 ZZZZ ⊕⊕⊕ .  Note that since 24 is a product of two primes, 24 is 

not a prime-power order, so one of the three identified Abelian groups ( 38 ZZ ⊕ ) must be 

isomorphic to the cyclic group Z24.  This also shows how groups of much higher order still 

have a limited number of Abelian groups.  For example, the prime factorization of 120 is 23 * 

31 * 51 which can only be combined in three methods, similar to groups of order 24.  

Therefore, the three Abelian groups of order 120 are 358 ZZZ ⊕⊕ , 3524 ZZZZ ⊕⊕⊕ , and 

35222 ZZZZZ ⊕⊕⊕⊕ .

The fact that Z24 is isomorphic to Z8 ⊕ Z3 leads to the ability to combine cyclic 

factors if they are relatively prime.  To combine the cyclic factors in a logical manner, 

“obtain a direct product of the form 
knnn ZZZ ⊕⊕⊕ L

21
, where ni divides ni-1.”10 Therefore, 

instead of combining 3524 ZZZZ ⊕⊕⊕ into 430 ZZ ⊕ , it would be described as 260 ZZ ⊕

since 4 does not divide 30 but 2 divides 60.  Nevertheless, these three groups that are 

  
9 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 212.
10 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 215.
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generated through the direct product of different cyclic groups are still isomorphic.  The 

combining and naming notation are for ease of use only.

The order of an element in a group can at most be the maximum order of the group; 

however, we know for any element a in a group G, <a> is a subgroup of G, where <a> is the 

set {an | n is an integer} and the order of a, |a|, in G is also the order of a in <a>.   Therefore, 

the order of any cyclic group Zk in the group 
knnn ZZZ ⊕⊕⊕ L

21
is k since the order of any 

cyclic group Zk is k and the maximum order of any element is the order of the group Zk in the 

direct product with the highest order since the cyclic groups are all subgroups of the original 

group.  Using this knowledge, the Fundamental Theorem can be converted into an algorithm 

to identify the cyclic elements that compose the direct product used to generate the group.

The Greedy Algorithm for an Abelian Group of order pn shown below is an algorithm 

that utilizes the Fundamental Theorem to identify the factors used in the direct product for 

the group.  This is very similar to the methodology used in the code to identify each of the 

factors that comprise the Abelian groups in the identification of remaining Abelian groups 

section of code.  The steps of the algorithm are: 11

1.

The list of Gi, where i goes from 1 to k, is the list of the k cyclic groups that comprise the 

direct product used to generate the Abelian group G.

An example of the calculation of the direct product for 24 ZZ ⊕ is shown to further 

display how the groups and more specifically the Cayley Table created in the code is 

generated.  The elements of Z4 are {0, 1, 2, 3}, while the elements of Z2 are {0, 1}.  The 

element 0 is the identity element for both groups.  In the direct product, these two groups 

combine their elements to form the new elements, {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), 

(3, 0), (3, 1)} where the element (0, 0) is the new identity element.  The operation used to 

combine the elements in Z4 and Z2 is maintained so we can use the Cayley tables for each 

group to determine the combinations.  Thus, if element (1,0) is to be combined with element 

(3,1), we would use the Cayley Table for Z4 to combine 1 and 3, while we would use the 

Cayley Table for Z2 to combine 0 and 1 in order to find element (0, 1).  Each of the new 

  
11 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 214-

215.
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elements of the group 24 ZZ ⊕ can be transformed into a single number creating an 

isomorphism of the original group that was generated through the direct product of the two 

groups  Thus, the new set of elements becomes {0, 1, 2, 3, 4, 5, 6, 7} with a one-one 

correspondence with the original elements.  The Cayley Table for 24 ZZ ⊕ with the direct 

product elements is shown in Table 1.  

Table 1. Cayley Table for Z4 ⊕ Z2

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1)

(0, 1) (0, 1) (0, 0) (1, 1) (1, 0) (2, 1) (2, 0) (3, 1) (3, 0)

(1, 0) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1) (0, 0) (0, 1)

(1, 1) (1, 1) (1, 0) (2, 1) (2, 0) (3, 1) (3, 0) (0, 1) (0, 0)

(2, 0) (2, 0) (2, 1) (3, 0) (3, 1) (0, 0) (0, 1) (1, 0) (1, 1)

(2, 1) (2, 1) (2, 0) (3, 1) (3, 0) (0, 1) (0, 0) (1, 1) (1, 0)

(3, 0) (3, 0) (3, 1) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

(3, 1) (3, 1) (3, 0) (0, 1) (0, 0) (1, 1) (1, 0) (2, 1) (2, 0)

The list of all Abelian groups of order less than or equal to 32 is included in the list of 

all groups of order less than 32 Table 4 in Appendix A.
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CHAPTER 4

GENERATORS AND RELATIONS

A group can also be created through the use of generators and relations.  Generators 

are the set of elements that are used in “a set of equations (called relations) that specify the 

conditions that these generators are to satisfy.”12 The set of elements are defined as the 

generators of a group G if “every element of G is expressible as a finite product of their 

powers.”13 While the relations could include how any combination of the generators equal 

other combinations, usual relations show the minimum number of equations needed in order 

to derive every other relation between the generators.  One of the more interesting aspects of 

generators and relations is that given a set of relations, any set of generators used that satisfy 

only the given relations will form a group isomorphic to any other set of generators that use 

those same relations.

Generators and relations are capable of creating all groups, including Abelian and 

non-Abelian.  The generators and relations have no indication which is being created, only 

the differences between the relations identify the differences in the groups.  For example, 

both the groups D4 and Z4 ⊕ Z2 utilize two generators and are order 8.  However, the groups 

are distinctly different including the fact that D4 is non-Abelian, while Z4 ⊕ Z2 is Abelian. 

The generators and relations for each group of order 8 are:

• Z8: a8 = λ (identity element)

• Z4 ⊕ Z2:  a4 = b2 = λ and ba = ab

• Z2 ⊕ Z2 ⊕ Z2:  a2 = b2 = c2 = λ, ba = ab, ca = ac, and cb = bc

• D4:  a4 = b2 = (ab)2 = λ

• Quaternion:  a4 = (ab)2 = λ and b2 = a2

  
12 Joseph Gallian, Contemporary Abstract Algebra, 5th ed. (New York: Houghton Mifflin Co., 2001), 433.
13 H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed. (New York: 

Springer-Verlag, 1980), 1.
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Note that in D4 and Z4 ⊕ Z2, element a is order 4, while element b is order 2. The 

only real difference in the relations is that while ba = ab in Z4 ⊕ Z2, ba = aaab in D4.  

However, the differences between the two relations cause significant differences in the 

groups.

The use of generators and relations was particularly useful in generating the non-

Abelian groups that are can be identified in the code.  In particular, specific classification of 

groups with similar relations could be identified as classified based upon the relations 

between the generators.  For example, dihedral groups of the form Dq are of the order 2q and 

have the relations aq = b2 = (ab)2 = λ with elements a and b of the cyclic groups Zq and Z2, 

respectively, are the generators.  What is actually occurring is that Zq has an automorphism 

of order 2 that “transforms every element into its inverse.”14 Thus, adjoining the group Zq

with an element b of period 2, the cyclic group Zq is transformed into the dihedral group Dq

defined by the equation b-1ab = a-1 which is equivalent to the relation (ab)2 = λ given above.

Another convenient classification group is the dicyclic groups.  These are identified 

as the groups of the form <2, 2, m>, where the order of the group is 4m.  Instead of the 

relations given by the dihedral group, the relations are slightly changed.  This relationship is 

also based upon the same automorphism that transformed the element a → a-1 from a cyclic 

group of the form Z2m.  However, instead of adjoining the group with an element of period 2, 

an element b of period 4 is used.15 Thus, for the group <2, 2, m>, while the equation of the 

mapping is still b-1ab = a-1, or (ab)2 = λ, the adjoining element is now of period 4 and instead 

of b2=λ, b4=λ.  However, since b4=λ, and by definition of Z2m, a2m= λ, the square of b now 

equals am, or b2=am.  Therefore, the relationships for the groups of the form <2, 2, m> are b

These groups lead to a more generalized relationship that provides an identification 

scheme for many of the non-Abelian groups of order less than 32.  The relationship 

eTS nm == , rSSTT =−1 provides a means to generate the groups:16

  
14 H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed. (New York: 

Springer-Verlag, 1980), 6.
15 H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed. (New York: 

Springer-Verlag, 1980), 7-8.
16 H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed. (New York: 

Springer-Verlag, 1980), 11.
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• Zm ⊕ Zn when r = 1

• Z2n when r = -1, m=2, and n is odd

• Dm ⊕ Zn/2 when r = -1, and n/2 is odd

• <2, 2, m> when r =  -1, n = 4, and m is odd

• Z2 ⊕ <2, 2, m/2> when r =  -1, n = 4, and m/2 is odd

Also, notice in the equation Dm ⊕ Zn/2, when n=2 the equation gives the dihedral group Dm

since Z1 is the identity and the relations become λ== 2TS m , 11 −− = SSTT which is 

equivalent to λ=== 22 )(STTS m .

An example of the generation of the group D4 is shown to further display how the 

groups and more specifically the Cayley Table created in the code is generated.  The relations 

for D4 are a4 = b2 = λ, ba=a-1b, where a4 and b2 represent the generators used along with their 

orders and inverses, while ba=a-1b is the “pseudo” commutative relationship used be the code 

.  Starting with the group Z4 generated by element a, the element b, which has a period of 2, 

is adjoined to Z4.  Therefore, the elements of the group D4 are {λ, a, aa, aaa, b, ab, aab, 

aaab}.  The relations are then used to reorder the elements when an operation between two 

elements results in a combination that is not one of the elements of the group.  For example if 

aab is combined with ab, the result is aabab.  This new result can then be transformed 

utilizing the defined relationships whereby aabab=aaa-1bb because ba=a-1b, aaa-1bb =abb 

because aa-1=a4=λ, and abb=a because b2=λ so the final result of the combination 

aabaab =• .  The final Cayley Table for D4 is shown in Table 2 along with the relationships 

used to derive the final table. 
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Table 2. Cayley Table for D4

λ a aa aaa b ab aab aaab

λ λ a aa aaa b ab aab aaab

a a aa aaa
aaaa 

= λ
ab aab aaab

aaaab = 

b

aa aa aaa
aaaa 

= λ

aaaaa 

= a
aab aaab

aaaab = 

b

aaaaab = 

ab

aaa aaa
aaaa 

= λ

aaaaa 

= a

aaaaaa 

= aaa
aaab

aaaab = 

b

aaaaab 

= ab

aaaaaab 

= aab

b b
ba = 

aaab

baa = 

aab

baaa = 

ab
bb = λ

bab = 

aaa

baab = 

aa

baaab = 

a

ab ab aba = b
abaa = 

aaab

abaaa = 

aab
abb = a

abab = 

λ

abaab = 

aaa

abaaab = 

aa

aab aab
aaba = 

ab

aabaa = 

b

aabaaa 

= aaab

aabb = 

aa

aabab = 

a

aabaab 

= λ

aabaaab 

= aaa

aaab aaab
aaaba = 

aab

aaaba = 

ab

aaabaaa 

= b

aaabb = 

aaa

aaabab 

= aa

aaabaab 

= a

aaabaaab

= λ

All the groups of order less than or equal to 32 along with many of their generators 

and relations are shown in Table 4 in Appendix A.
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CHAPTER 5

HISTORICAL BACKGROUND

David Gibbs’, “Computer Generation and Identification of Groups of Order 2 to 31” 

goal was to generate and identify all 92 groups through order 31 including the 45 non-abelian 

groups.17 The code was originally written in Pascal in four distinct code pieces that ran 

independently.  Three of the sections dealt with generating different types of groups, while 

the remaining section was for identifying the groups.  Generated groups were stored as files 

that could be read by the identification code.  No user interface was available except for 

command line instructions.  All information for this chapter was taken from Gibbs’ paper 

except where otherwise noted.  

Gibbs was able to identify all groups of order 2 to 31 up to isomorphism when the 

identity of the group was element 0.  By forcing element 0 to be the identity element, Gibbs 

also reduced the number of possible isomorphisms by a large amount.  Since Gibbs’ code did 

not determine if the table being identified actually represented a group, the user would have 

to ensure the table represented a group with element 0 as the identity before running the 

code.

There were three distinct sections of code that were created by Gibbs in order to 

generate the different groups.  He separated the group generation into cyclic groups, groups 

formed by defined relationships, and cross product groups.  Each of the generator programs 

created text files that contained the group or groups created.  Each group in the text file 

consisted of single line that contained the order of the group and a comment field followed 

by n lines which contained n space delimited numbers.  This nxn table represented Cayley 

Table for the group that was generated.  These text files, along with files of similar structure, 

were then used as input to the identification program.  Gibbs was able to identify generators 

for all of the groups of order less than 32.

  
17 David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31” (unpublished Math 

797 Project, San Diego State University, 1984), 4-9.
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PROGRAM GEN_ZN.PAS

Cyclic groups are groups that can be generated by a single element.  Gibbs utilized 

modulus arithmetic to generate an example of the cyclic groups by adding the row and 

column for a particular cell in the Cayley Table and taking the modulus of the result with 

respect to the order of the group to be generated.  Thus, for group Z7, the result in row 4, 

column 5 would be (4+5) mod 7 or element 2. Gibbs’ program gen_zn.pas automatically 

created all 30 cyclic groups of order 2 to 31 when run.  All 30 groups were stored in a single 

text file starting with group Z2 through group Z31, with each Cayley Table labeled with its 

order n and name Zn.

Each cell could be calculated independently by utilizing the row and column numbers 

of the cell.  Therefore, by looping through each row and column the entire Cayley Table 

could be generated in two for loops.  Each cell could then be calculated with one addition 

operation and one division, yielding f(n) = 2n2 operations. Therefore, the generation of 

Cayley Tables for cyclic groups ran in O(n2) time.  

PROGRAM DEF_REL.PAS

Groups formed by defined relationships were created utilizing two to four generators

(letters) that are combined based upon the order of the generators as well as what Gibbs 

called “pseudo” commutative substitution instances.  Defining relationships were 

documented by Gibbs for 34 of the 45 non-abelian groups of order less than 32.  The 

remaining 11 relationships were generated utilizing the cross product code.  The order of the 

generator defined the maximum number of elements of that generator as well as the inverse 

element of the generator.  The “pseudo” commutative substitution instances defined how the 

generators combined so that they could always be placed in the same order as well as any 

other relations between the generators.  For example, if there were two generators, “a” and 

“b”, a “pseudo” commutative substitution instance would be required to determine how to 

switch the order of the generators.  Therefore, a combination of the generators, “ba”, would 

have a substitution where the “a” generator was first.  This combination of generator 

characteristics and “pseudo” commutative substitution instances are combined into a 

substitution list.
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…the elements of the set were created by appending all possible ordered 
combinations of letters and stored in the array elt_list.  Then, the group table is 
built, each element being formed by the concatenation with another element in the 
table.  The resulting string is then examined against the substitution list for 
possible simplifications, and this process continues until the string is reduced to 
an element in the set (i.e. one in the array elt_list).  It is then replaced by the 
corresponding integer subscript of the array elt_list, and the resulting group table 
once again consists of integers.18

Gibbs’ def_rel.pas program used a command line entry system for its user interface.  

On startup, the program will first requests the user enters two file names, one for the Cayley 

Table to be stored in the same format as in the cyclic tables and the second for the defining 

relationships to be used to form each group.  The program would then request the user to 

enter the order of the group that the user wished to create along with a name to be stored in 

the comment field.  The program would then request the number of generators, assuming a 

number between 2 and 4 was entered.  No error checking was used throughout the program 

in order to determine if the user entered a legal value.  The order of each of the 2 to 4 

generators, labeled a, b, c, and d, was then requested.  The program would then request any 

relationships which were not pseudo-commutative that were used for substitution 

relationships.  These would be relations of the form bb=aa, as used by the Quaternion group

for replacing instances of bb in an evaluation of some combination of two elements with aa.  

The user would enter the left side of the equation and then the right at separate prompts using 

the value 1 for the identity element.  The user would then enter the right side of the equation 

for a predefined list of “pseudo” commutative relationships.  These would be relationships of 

the form ba=awbxcydz, where the left hand side represents all possible 2-element 

combinations of the generators used in reverse alphabetical.  The values for w, x, y, and z 

actually represent the number of a’s, b’s, c’s, and d’s used in the equation.  Therefore, the 

“pseudo” commutative relationship for the group D8 which only has two generators would be 

ba=aaab.  Also, since Gibbs’ code understood the inverse to be the capitalization of the letter 

representing the generator, the “pseudo” commutative relationship for the group D8 could 

also be represented as ba=Ab.  If there were three generators, an additional two “pseudo” 

commutative relationships were needed for ca and cb, while four generators would require 
  

18 David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31” (unpublished Math 
797 Project, San Diego State University, 1984), 12.
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even more relationships for da, db, and dc.  The program will then list all of the relationships 

it is to use for generating the new group for the user to approve.  If the user does not approve 

of the relationships, all data must be reentered.  If the defined relationships were approved 

the program would store the relationships along with the order and comment field in a text 

file and then generate the group.  Once the group was generated, it would be stored in the 

same format as the cyclic group with the order and comment field on one line followed by 

the Cayley Table on n lines, where n is the order of the group.  The user can then exit the 

program or begin again and generate a new group to be stored in the same file.

According to Gibbs, the creation of the final element list would require at most 4n 

string concatenations and n array assignments.  To combine each of the elements in the 

Cayley Table takes n2 concatenations, one for each cell in the grid.  In order to simplify a 

single element generated via the concatenations would require, in the worst case, substitions 

on the order of O(nm) where m is the number of generators.  Since substitutions would 

checked on all cells generated, the generation of defined relationships would run in O(n4).19

PROGRAM CROSS_PR.PAS

Cross product groups were formed by taking two groups and forming a new group 

based upon the combination of elements from both groups.  The cross product code was used 

to create the remaining 28 groups, 17 abelian and 11 non-abelian.  All of the groups used in 

the cross products are generated by either the cyclic method or the defined relationship 

method.  For two groups of size n and m, the order for the corresponding cross product group 

would be n*m.  Each element in the new group would initially be represented as a 

combination pair (e.g. (0,0), (0,1), …, (0,m-1), (1, 0), …, (1, m-1), …, (n-1,0), (n-1,1), …, 

(n-1,m-1) that is later mapped to it’s corresponding position in the array within which the 

pairs are stored. The cells in the Cayley table are calculated by utilizing the row and column 

values along with the array of pairs to determine positions in the original group tables that are 

then used to calculate new pairs whose position in the array is used as the cell value.  For 

example, when calculating Z2 x Z4, the elements 0 to 7 in the coordinate array would be 

(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), and (1,3).  To calculate the value of the cell (2,7) 
  

19 David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31” (unpublished Math 
797 Project, San Diego State University, 1984), 11-12.
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we would use elements 2 and 7, (0,2) and (1,3) respectively.  The new cell would use the 

value of cells (0,1) from the Z2 table and the value of cell (2,3) from the Z4 table to give a 

new coordinate pair of (1,1) which is element 5 in the array. Therefore, cell (2,7) in the 

Cayley table for Z2 x Z4 would equal 5.

Gibbs’ cross_pr.pas program would only generate the cross product of two groups.  In 

order to generate cross products of more than two groups, the program had to be run multiple 

times to allow the results of one cross product to be combined with another group in order to 

build larger order cross product groups.  The program would request, via the command line, 

the user enter the name of two files, each containing one group in the format that was 

previously described.  The program would then use these two groups to generate a cross 

product, while calculating the order of the new group by determining the elements of the new 

group.  This new group would be stored in the same format as the cyclic and defined 

relationship groups in a file named output.dat.  The comment for the new group would 

consist of the comment from the first group, an x, and the comment from the second group.  

The program would then inquire whether the user wanted to create another cross product 

group or exit the program.

In order to load the two groups into memory, the program takes n1
2 and n2

2 operations 

where n1 and n2 are the order of the two groups and the order of the cross product group is 

n=n1*n2.  It takes 2n operations to generate the cross product combination pairs. It then 

requires 2n2 operations to create the Cayley Table because each element in a pair has to be 

separately calculated.  Finally, once each combination pair is generated, an additional 

maximum n operations are required to associate the combination pair with its array position.  

Thus, a total worst case has the program running in O(n2) time.20

PROGRAM IDENT_GP.PAS

The program that was used for identifying a group, ident_gp.pas, requested from the 

user the name of a text file that was in the form used by the generator programs.  It would 

then request the user decide if output would be sent to the screen or a file name the user 

chose.  The program would then read the first group stored in the file, output the order and 
  

20 David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31” (unpublished Math 
797 Project, San Diego State University, 1984), 10-11.
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comment on the first line of the input file to the screen or output file and store the Cayley 

Table in a 128x128 integer array, severely wasting space.  After identifying the group, the 

program would also output the name of the group to the screen or output file.  If the input file 

was not empty, and contained another group, the program would then repeat the process.

The code goes through a specific five step process for identification after first 

calculating the number of elements of each order.  No effort is made to determine if the 

Cayley Table actually represents a group before the identification process begins.

1. The code checks if the groups are cyclic by determining if the order of any of the 
elements in the group equals the order of the group.  There are a total of 30 cyclic 
groups for groups of orders 2 to 31, one for each order.

2. The code then determines if the order of the group is of the form 2*p, where p is 
prime (e.g. group order is 6 where p=3).  If the group order is of the form 2*p, the 
group is either cyclic which was determined in step 1, is the Klein-4 group if order 4, 
or one of the prime number dihedral groups (D3, D5, D7, D11, or D13) that have 
order less than 32.  The specific group is determined by the value of p.

3. The code then determines if the order of the group is of the form p2, where p is prime 
(e.g. group order is 25 where p=5).  If the group order is of the form p2, the group is 
either cyclic which was determined in step 1, or a cross product of the cyclic groups 
of order p.  The only two groups with order less than 32 that this would include are 
Z3xZ3 (order 9) and Z5xZ5 (order 25) and the specific group is determined by the 
value of p.

4. The code then determines if the group is abelian by determining if all elements in the 
group commute.  If the group is abelian, the code calculates the cross product group 
by first determining the highest order element of the group and using that value as the 
order of the first cyclic group in the cross product.  The value is also divided into the 
total order of the group giving a remaining value of the group that is the factored into 
its prime factorization.  This prime factorization is used along with the number of 
elements of the respective prime value to determine the number and value of the 
remaining cyclic groups in the cross product.  Thus, if the prime factorization yields 
px, and there are n elements of order p in the group, the number of factors necessary
to equal px and be used in the cross product is log2 (n+1) – 1.  There are a total of 14 
remaining abelian cross product groups with order less than 32 that can be determined 
by this method.

5. The remaining groups that have not been identified are the non-abelian groups other 
than the dihedral groups of the form Dp, where p is prime identified in step 2.  In all 
but two exceptions, the order of the elements of the group is used to uniquely identify 
the group.  These groups are separated by group order then by the order of the 
elements of the group utilizing a case statement.  The two exceptions are for two pairs 
of groups of order 16.  Each pair of groups has the exact same order structure for the 
elements in each group.  In order to differentiate each group, one pair can be 
differentiated by determining which group has the Klein-4 group as its center, while 
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the second pair can be differentiated by determining which group has a non-normal 
cyclic subgroup.  There are a total of 40 additional non-abelian groups that are 
identified with this method.

The determination of the number of elements of each order is done in 2n2 time.  Once the 

order of the elements is established, the determination of whether a group is cyclic can be 

done in n time.  The code to check for whether the order is 2*p or p2 is n , while 

determination of whether a group is Abelian is n2.  The identification of an Abelian group 

occurs in 3n operations, while the identification of the non-Abelian group is about n+n2+2n3

operations. However, only the differentiation of the non-abelian groups Z2 ⊕ Quaternion and 

Z4 xo Z4 based upon determination of the normality of their subgroups requires 2n3

operations.  All other non-abelian groups are also found in about n+n2 operations.  Therefore, 

the entire identification process runs in: 21

f(n) = 2n2 + n + 2*sqrt(n) + n2 + 3n: O(n2) for Abelian groups
f(n) = 2n2 + n + 2*sqrt(n) + n2 + n + 2n3: O(n3) for non-Abelian groups.

  
21 David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31” (unpublished Math 

797 Project, San Diego State University, 1984), 19-20.
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CHAPTER 6

USER INTERFACE

The user interface was added to aid in visualizing the groups as a Cayley table as well 

as to assist the user when utilizing the code to generate and analyze groups.  The user 

interface consists of a main panel that contains a series of buttons, labels, and a secondary 

panel that contains a table representing the group as a Cayley table.  The interface was 

developed utilizing Java Swing components.  A view of the interface is shown in Figure 2.

Figure 2. Sample view of the user interface including the group D4
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CLASSES GROUPMAINFRAME AND GROUPMAIN

Two separate main panels were created depending on the desired use of the software.  

A main extended JFrame, groupMainFrame, for use as a standalone utility and an extended

JApplet, groupMain, for use as an applet as part of a website which are identical were both 

created.  A section of JButtons is on each main panel, each of which has a method associated 

with it when the JButton’s action listener is activated.  There are two hidden JLabels that are 

only shown when in use in addition to the two labels describing the button sections.  A 

secondary extended JPanel named groupPanel is an added component to groupMainFrame 

and groupMain.  This extended JPanel contains the view of the actual Cayley table utilizing a 

JTable and the instance of groupPanel in the main frame or applet is called myGroup.

In addition to the Swing objects there are also additional objects that are used to 

create and identify the groups being displayed in the user interface.  A groupCreator object, 

myCreator, contains methods to generate the groups and stores the group once it is generated.

A groupIdentify object, groupNamer, contains the methods used to identify the groups on 

display and stores the name of the group once it is identified.  Both of these classes use a 

common class called groupMatrix in order to store the group being generated, displayed, and 

identified.  More detail on these objects can be found in the Code Description chapter.  

Group Generation Buttons
The user interface has eight buttons that are JButton components.  Four of the buttons 

are utilized to generate groups, while the other four buttons are used to analyze the groups 

that have been generated. Three of the group generation buttons are associated with actions 

that directly interface with code that is based upon the original Gibbs group generation code.  

This is code that is used to create the cyclic, defined relationship, and cross product groups.  

The methods that are called have functionality directly related to user interaction, such as 

requesting the order of the group to be generated, the number of groups to be used in the 

defined relationship or cross product, or the actual relationships between the groups.  This 

data is input via input dialog boxes, while error messages questioning the input from the user 

is displayed in message dialog boxes.  The limitations that Gibbs had in his software, 
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including the size and number of groups the user can use in generating new groups has been 

eliminated.  The methods than call methods in the groupCreator object that directly generate, 

and store the groups, methods in the groupIdentify object to identify the groups, and methods 

in the groupPanel object to update the display of the groups.  The generation, storage, and 

identification classes will be discussed in the next chapter, Code Description.  The final 

group generation button is associated with a method that allows the user to directly input a 

Cayley table in the user interface.  

The “Cyclic Group” JButton, btnZnGroup, is associated with a Java ActionListener 

that determines when the button is pressed and calls the method createZnGroup which is a 

method in the main panel.  The method will then call the method createNextCyclicGroup 

which returns a boolean that signals successful generation of a cyclic group.  The method 

createNextCyclicGroup opens a JOptionPane Input Dialog box, shown in Figure 3, that 

requests the user enter the order of the cyclic group to generate.

Figure 3. Cyclic input dialog box.

Error checking is done to ensure the user enters an integer.   Unlike Gibbs, any order 

cyclic group can be generated.  If an integer greater than 0 is entered, the method in 

groupCreator used to generate a cyclic group (createCyclicGroup) is called and the group 

generated is stored in the groupCreator object.  If createNextCyclicGroup is ever 

unsuccessful, a JOptionPane message dialog box is displayed with the error that occurred and 

then the method returns failure to the method that called it.  Upon successful creation of a 

group the createZnGroup method will update the groupMatrix object stored in myGroup and 

then call the findGroupName method that is discussed later in this chapter.

The “Defined Relationship Group” JButton, btnDefRelnGroup, is associated with a 

Java ActionListener that determines when the button is pressed and calls the method 

createDefinedRelationshipGroup which is a method in the main panel.  The method opens a 
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JOptionPane Input Dialog box requesting the user enter the number of generators to use.  

Error checking is done to ensure an integer greater than or equal to two is entered.  If there is 

an error at this point, the method returns without creating the new group.  Unlike Gibbs, 

more than four generators can be used.  The method will then request the order of each of the 

generators utilizing error checking to ensure an integer greater than 0 is added.  If an error 

occurs, the system will continue to ask for a legal value until one is entered.  

Each of these orders is added to an ArrayList containing the orders of each of the 

generators of the group and a groupRelation object is instantiated.  An ArrayList is a Java 

collection class similar to an array that also allows the code to dynamically allocate space as 

more objects are added to the collection.  A groupRelation object is a special object that 

contains two strings, left and right, which represent a relationship used in the generation of a 

defined relationship group.  The groupRelation for each generator contains the generator 

repeated the order of the generator times for the left string and an empty string for the right 

string.  For example the left string for a generator of order 3 would be “000” if it was the first 

generator, while the right string would be “”.  Each string can be retrieved separately for the 

groupRelation.  Each groupRelation object is stored in an ArrayList called 

definedRelationships.  A better description of the groupRelation object is given in the Code 

Description Chapter.

The method createDefinedRelationshipGroup than requests the user answer whether 

they have any additional relationships to add which were not pseudo-commutative that were 

used for substitution relationships.  These would be relations of the form bb=aa, as used by 

the Quaternion group for replacing instances of bb in an evaluation of some combination of 

two elements with aa.  All letter combinations are immediately converted to their 

corresponding number combinations, where a=0, b=1, etc.  If the user enters “yes”, the 

method would request the user enter a relationship in the form left=right, where “left” and 

“right” represent lists of generators.  This relationship would be stored in another

groupRelation object.  If the left string already equals the same as a previously generated 

relation stored in the definedRelationships ArrayList, the right string is replaced.  For 

example, the Quaternion group’s second generator is order 2 giving the relationship 11 = “”; 

however, the relationship bb=aa, would replace the relationship previously created for the 

order of the second generator so that the new relationship would be 11=00.  If the left string 
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has not been used in a previous relation, the new groupRelation is added to the 

definedRelationship ArrayList. The user is allowed to enter as many special relationships as 

desired.  After the substitution relationships have been entered, the method than calls the 

getNextRelatioship method for each “pseudo” commutative relationship to be added to the 

definedRelationship ArrayList.  The getNextRelationship requests the “pseudo” commutative 

relationship for a defined left string (e.g. ba, ca, cb, etc.) and then performs error checking to 

ensure the order of the generators used in the relationship is alphabetical.  This was because 

the elements of the defined relationship group always would always have the generators in 

alphabetical order.  Therefore, a groupRelation whose right string that looked like “aba”, 

would not be able to create an element where the a generators never followed the b 

generators.  Once all of the “pseudo” commutative relationships were defined the method in 

groupCreator used to generate a defined relationship group (createDefineRelationshipGroup) 

is called and the group generated is stored in the groupCreator object.  Upon successful 

creation of a group, the createDefinedRelationshipGroup method will update the 

groupMatrix object stored in myGroup and then call the findGroupName method that is 

discussed later in this chapter.

The “Cross Product Group” JButton, btnXProdGroup, is associated with a Java 

ActionListener that determines when the button is pressed and calls the method 

createXProdGroup which is a method in the main panel.  The method opens a JOptionPane 

Input Dialog box requesting the user enter the number of groups in the cross product.  Error 

checking is done to ensure an integer greater than or equal to two is entered.  If there is an 

error at this point, the method returns without creating the new group.  Unlike Gibbs, more 

than two groups can be used to create the group.  The user is then asked to enter 1 if the next 

group in the cross product is a cyclic group and a 2 if the next group is a defined relationship 

group.  If a 1 is entered, the method calls createNextCyclicGroup described above, while if a 

2 is entered, the method calls createDefinedRelationshipGroup.  If something else is entered, 

the program returns without creating a new group.  The group created is stored in a 

temporary instance of groupMatrix, myGroup1.  Subsequent groups are requested from the 

user in the same manner and temporarily stored in another groupMatrix instance, myGroup2.  

Once two groups have been created, the method in groupCreator used to generate a cross 

product group (createXProdGroup) is called and the group generated is stored in the 
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groupCreator object.  If another group needs to be added to the cross product, the previously 

created group stored in the groupCreator object is moved to myGroup1 and the process is 

repeated.  Once the final cross product has been performed, the createXProdGroup method 

will update the groupMatrix object stored in myGroup and then call the findGroupName 

method that is discussed later in this chapter.

The final group generation button is the “User Defined Group” JButton, 

btnUserDefinedGroup, is associated with a Java ActionListener that determines when the 

button is pressed and calls the method createUserEntryGroup which is a method in the main 

panel. The method opens a JOptionPane Input Dialog box requesting the user enter the order 

of group the user will create.  Error checking is done to ensure an integer greater than one is 

entered.  If there is an error at this point, the method returns without changing the currently 

displayed group.  The method in groupCreator used to create an empty group 

(createEmptyGroup) is called and the empty group is stored in the groupCreator object.  The 

empty group is usually a table filled with the value -1 in each cell.  The 

createUserEntryGroup method will then update the groupMatrix object stored in myGroup 

while allowing the user the ability to edit the group, unlike the other generation methods.  

The JLabel above the group, lblGroupName, is then set to “Group Table: User Defined” 

instead of calling the findGroupName method to set it.

Group Analysis Buttons
The remaining four buttons on the user interface are for analyzing the groups that are 

on display.  They are particularly useful for the user entered groups.  The first two buttons 

determine if the Cayley table that is displayed is actually a group and whether that group is 

abelian. There are two JLabels that are hidden from the user’s view unless specific 

information needs to be displayed.  This information is usually the results of the analysis 

JButtons or the methods associated with the analysis JButtons.  The JLabel, lblGroupName, 

is at the top of the user interface and displays the name of the current group being displayed.  

The JLabel, lblResultsOfAnalysis, is just above all the JButtons and displays the results of 

the analysis buttons.  

The methods associated with the action of the first two buttons directly interact with 

the groupMatrix object, as that class has characteristic group tests associated with it.  The 
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JButtons Check if Group, btnCheckGroup, and Check if Abelian, btnCheckAbel, are 

associated with Java ActionListener’s that determine when the buttons are pressed and call 

the methods checkIfGroup and checkIfAbelian.  Both methods would first replace the group 

stored in the groupCreator object with the one being displayed in the groupPanel object in 

case the group was edited.  The methods would then use the groupMatrix object functionality 

to ensure the group represented by the table had an identity element, had inverses for all the 

elements, and was associative.  The checkIfAbelian method would also ensure the group 

represented by the table was commutative.  If any of these tests failed, the JLabel, 

lblResultsOfAnalysis would be updated with the cause of the failure in red text.  Otherwise, 

success of the test would be reported via lblResultsOfAnalysis in blue text.

The Find Group Name JButton, btnCheckName, is associated with a Java 

ActionListener that determines when the button is pressed and calls the method 

findGroupName.  This is the same method called by createZnGroup, createXProdGroup, and 

createDefinedRelationshipGroup methods.  Similar to the checkIfGroup method, this method 

would first replace the group stored in the groupCreator object with the one being displayed 

in the groupPanel object in case the group was edited.  Unlike Gibbs, the method would also 

ensure the group represented by the table was a group by determining if it had an identity 

element, had inverses for all the elements, and was associative.  If the table being displayed 

is not a group the JLabel lblResultsOfAnalysis would be activated with message, “Group 

Table: This is not a Group.”  This was because the groupIdentify object has no error 

checking to determine if a group was a class before it tried to identify the group.  The method 

would then replace the group stored in the groupIdentify object with the new group in the 

groupCreator object which would start the identification process by groupIdentify object.  

Once the groupIdentify object was able to determine a name, the JLabel lblGroupName 

would be set with that name.

The “Find Inner Automorphism” button is associated with a method is associated 

with a Java ActionListener that determines when the button is pressed and calls the method 

createInnerAutGroup.  Similar to the checkIfGroup method, this method would first replace 

the group stored in the groupCreator object with the one being displayed in the groupPanel 

object in case the group was edited.  The method would also ensure the group represented by 

the table was a group by determining if it had an identity element, had inverses for all the 
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elements, and was associative.  If the table displayed is not a group, a JOptionPane with an 

error message dialog box would be activated as shown in Figure 4.

Figure 4. Error message dialog box.

The method in groupCreator used to create an inner automorphism group 

(createInnerAutGroup) is called and the group is stored in the groupCreator object. Upon 

successful creation of a group, the createInnerAutGroup method will update the groupMatrix 

object stored in myGroup and then call the findGroupName method.  Finally, the JLabel 

lblResultsOfAnalysis is also updated and displayed with the name of the group retrieved 

from the groupIdentify object that was updated by the findGroupName method. 

CLASS GROUPPANEL

The secondary panel is a separate class used to display the Cayley table to the user.  

This class is an extended JPanel class that is called groupPanel.  It contains a JTable with a 

JScrollPane so that the entire JTable can be viewed.  Also, the groupPanel object is passed 

and stores an instance of the groupMatrix object as a private variabl myGroup.  This object

contains the actual group to be displayed.  The class groupPanel allows changes to specific 

cell values in the Cayley Table stored in myGroup via a public method changeValueInGroup.  

Also, myGroup can be retrieved via the public method getGroup.  The class 

groupTableModel, which is an extended AbstractTableModel, is also a field in groupPanel.  

When it is instantiated, it is passed myGroup and then set as the JTable’s model.  It uses the 

data in myGroup to fill the columns and rows in the JTable.  

When a new group is generated via the JButtons on the main applet or frame, the 

groupPanel’s updateTable method is called to reset the myGroup as well as pass it to the 

groupTableModel.  The first column and header of the JTable are then set to different colors 

because the first column contains the element represented for each of the rows in the Cayley 
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Table on display. The column is set to a different color via a DefaultTableCellRenderer, a 

class used to displaying individual cells in a JTable.  The DefaultTableCellRenderer is 

instantiated and its background, foreground, and font are set.  This specific renderer is then 

set as the specific cell renderer for column 0 of the JTable.

CLASS GROUPTABLEMODEL

The groupTableModel class is an extension to the Java class AbstractTableModel and 

describes how the user interface displays the Cayley Table stored in a groupMatrix object.   

The groupPanel object being displayed as part of the user interface instantiated a 

groupTableModel object.  The JTable in groupPanel then uses this local instance of 

groupTableModel as its model for where its data is located and how it is formatted.  

The AbstractTableModel is an abstract class.  An abstract class in Java contains 

abstract methods or methods that have not been defined.  A class that extends an abstract 

class must implement the abstract methods in the abstract class it is extending in order to be 

declared legal.  The three abstract methods that must be implemented in a class that extends 

an AbstractTableModel are:

• public int getColumnCount()

• public int getRowCount()

• public Object getValueAt(int row, int column)
The AbstractTableModel also implements most of the default methods of the 

TableModel interface.  The TableModel interface provides the other default methods that 

help to define the way data is displayed in the JTable.  Nevertheless, any class that extends 

an AbstractTableModel can store its data in any type of data structure or outside source such 

as a database or the class could generate the data real time.  It only needs to be able to 

implement the getValueAt method in order to retrieve the data for a particular position in the 

JTable.

The groupTableModel uses a private ArrayList of ArrayList of strings called 

tableRows to store the data it parses from the groupMatrix object that it is passed .  This 

ArrayList also represents the Cayley Table; however, an extra column is inserted at the 

beginning to represent the row names which are the elements in the group.  Therefore, the 

first column has a 0 in the first row, a 1 in the second row, etc., while the column names are 
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set to 0 for the second column, 1 for the third column, etc.  The groupTableModel uses a 

separate private ArrayList of strings called colHeaders to store the column names.  A private 

boolean value called canEditTable that is set based upon whether the JTable should be 

editable, while a private integer is used to store the order of the displayed Cayley Table.  The 

groupTableModel class is not passed a groupMatrix object when it is instantiated.  Therefore, 

it initially instantiates tableRows and colHeaders empty so the JTable is empty. However, a 

pointer to the groupPanel class that instantiated groupTableModel is passed to the 

groupTableModel when it is constructed so that it can pass back changes to the Cayley Table 

in the setValueAt method that is overridden.

When a new group is generated, the groupPanel’s updateTable method is called by 

the methods used to generated new groups and is passed the new groupMatrix object and a 

boolean value as to whether the JTable should be editable as its parameters.  This method in 

turn calls the groupTableModel’s displayTable method with the same parameters.  The 

displayTable method will set the boolean canEditTable with the boolean parameter and order 

with the order of the Cayley Table stored in the groupMatrix object.  The displayTable 

method will then fill each ArrayList in tableRows with the corresponding ArrayList from the 

groupMatrix object, adding the extra element to the front of each ArrayList that contains the 

element name from the group corresponding to rows in the Cayley Table.  

The abstract methods getColumnCount and getRowCount retrieve their data from the 

the value of order, where the column count is order+1 and row count is order.  The 

getValueAt method retrieves the ArrayList of strings from tableRows corresponding to a 

specific row and then returns a string corresponding to a specific column in that ArrayList as 

the Object returned. The method getColumnName is overridden because the column names, 

which are the same as the elements in the Cayley Table, are shifted one column over so row 

names can be placed in the first column.

Since some of the displayed groups can be edited, both the isCellEditable and 

setValueAt methods were overridden.  The isCellEditable returns the value set in the 

canEditCell boolean except in the case of cells in column 0, which can never be edited.  The 

setValueAt method is used to update the value stored in tableRows when the user edits the 

JTable manually.  This method ensures only legal values are set on the Cayley Table, 

integers from 0 to order-1.  Also, the setValueAt updates the groupMatrix object stored in the 



31

groupPanel object that instantiated groupTableModel.  This is to ensure that the table can 

later be analyzed using the analysis functionality in the main frame or applet.  
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CHAPTER 7

CODE DESCRIPTION

Gibbs’ code was transferred from Pascal to Java in order to ease the addition of the 

user interface described previously as well as enabling the ability to make the code object 

oriented so that it could be easily extended and different objects could be used in other future 

applications.  The code utilizes a groupMatrix object that stores the group as its Cayley 

Table.  This allows the group to be stored independent of the operation that is performed on 

the elements as well as any relationships between the elements.  In addition, the 

methodologies to analyze the group are also contained in the groupMatrix class.  Utilizing 

this single class allowed the code to transfer an object that would contain the group from the 

generator object (groupCreator) to both the user interface object (the AbstractTableModel 

extension groupTableModel) and the identifier object (groupIdentify) along with the methods 

those objects use to analyze the group.

CLASS GROUPMATRIX

The groupMatrix class contains the order of the group and an ArrayList that holds an 

ArrayList of String objects as private fields.  Each value in the Cayley Table is represented 

by a single String object that is the string representation of an integer value.  Each row in the 

Cayley Table is stored as an ArrayList of String objects and the entire group is stored as an 

ArrayList of the rows of ArrayLists.  The groupMatrix class has public methods to get and 

set individual cells in the Cayley Table as well as determine if the current group is equal to 

another.   The class also has public methods that allow the group to be reset to an entirely 

new group or a new order.  The class can be used to determine if the table is an actual group 

because it has public methods to check for an identity element, an inverse for all elements, 

and whether the table is associative as well as whether the table is commutative in order to 

determine if the group is abelian. The class also has public methods to calculate and return 

the identity element as well as the inverse of any other element.  An additional public method 
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is available that has not been utilized that analyzes the stored Cayley Table to ensure that 

none of the values in a row or column is repeated.  

The determination of the identity element is particularly different because Gibbs’ 

ident_gp.pas program assumed assumed that the identity element was always element 0.  In 

order to identify the identity element the process is:

1. Determine the row in the Cayley Table where the row element, ei, combines with 
every column element, ej, such that ei • ej = ej.  This is the left identity of the Cayley 
Table.

2. Determine the column in the Cayley Table where the column element, ej, combines 
with every row element, ei, such that ei • ej = ei.  This is the right identity of the 
Cayley Table.

3. If the left and right identity elements are equal than the Cayley Table has an identity 
that is equal to that element.

The identification of the identity element would take, at worst case, about 2n2 operations 

because determining the left and right identities would each take n2 operations to check every 

column in every row, and vice versa.  Therefore, the total order for identifying the identity 

element would be O(n2).

CLASS GROUPCREATOR

The groupCreator class is used to generate new groups that can be displayed and 

analyzed via the user interface.  Much of the code for this class was adapted from Gibbs’ 

original Pascal code.  The groupCreator class has a private field of type groupMatrix, labeled 

group, which is either sent to the groupCreator directly through the public resetGroup method 

or built in groupCreator utilizing one of the group generator methods described below.  Once 

a group is generated, it can be returned through the public getGroup method.  There are now 

five group generator methods.  The first three, createCyclicGroup, createXProdGroup, and 

createDefineRelationGroup are all based upon Gibbs’ code and generate cyclic, cross 

product, and defined relationship groups, respectively, using the approach Gibbs used in his 

original code.  The major difference between these methods and Gibbs’ generation programs 

are the number of groups that can be generated.  There is also a createEmptyGroup method 

which fills all the cells of a nxn Table with the value -1, where n is the order of the table to 

be entered by a user.  The final generator method is createInnerAutGroup which creates an 
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inner automorphism group based upon the current instance of group. Descriptions of how 

each method works is given below.

createCyclicGroup Method
The method createCyclicGroup is nearly identical to the code used in Gibbs’ 

create_zn.pas program.  The limit of order less than 32 for the cyclic groups was removed.  

The order of the new group to be generated is passed in as a parameter to the method.  If the 

order of group in the current instance of the groupCreator class is different, group is reset 

with the new order utilizing the groupMatrix resetSize method.  Each entry in group’s Cayley 

Table is then updated utilizing the setEntry method with a value corresponding to (row + 

column) mod order.  A check is then done to ensure all the cells in the Cayley Table have a 

value before returning.

createDefineRelationshipGroup Method
The createDefineRelationshipGroup method is passed an ArrayList of generators with 

their orders, generatorList, and an ArrayList of groupRelation objects, relationships,

containing the defined relationships for the group.  The orders of all the generators are 

multiplied to determine the order of group which is then reset to that size.  The private 

method createFinalElementList is then called with generatorList as its parameter. The 

method first creates an ArrayList of ArrayList of String objects where ArrayList of Strings 

would represent the different generators and the Strings in each ArrayList would represent 

the elements that could be created from that generator.  Therefore, each row could have a 

different number of columns.  For example, if generator 0 was of order 3, the possible 

elements would be “”, “0”, and “00”; whereas if generator 1 was of order 2, the possible 

generators would be “” and “1”. The element from each generator would then be combined 

in all possible combinations while ensuring generator 0 elements are always before generator 

1 elements that are always before generator 2 elements, etc.  Therefore, for the two 

generators given above the final element list would be “”, “0”, “00”, “1”, “01”, and “001”, 

representing values 0-5 in the final Cayley Table. When the final element list is returned, the 

createDefineRelationshipGroup method uses each of these elements as a row and column in 

the Cayley Table.  For each possible cell in the table, the elements in the table are combined 
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and they resulting value is reduced using the defined relationships stored in relationships to 

reduce the results until it equals one of the final elements.  The process for reducing the 

combined elements to a final element is:

1. Combine two elements into a temporary word 
2. Begin reduction loop

3. Loop through each groupRelation in relationship
4. Compare left string of current groupRelation to temporary word

5. If left is in temporary word replace left in temporary word in string, replace left in 
temporary word with right from the groupRelation and go to 2.

6. If another groupRelation is in the ArrayList relationship go to 3.
7. Reduction done, compare final temporary word to element list and set entry in table 

for combination of the two elements to the element’s position in the final element list.
Once all of the possible row, column combinations are calculated, the Cayley Table is 

complete.  A check is done to ensure all the cells in the Cayley Table have a value before 

returning.

createXProdGroup Method
The createXProdGroup is passed two groupMatrix objects g1 and g2 as parameters.  

The order of the new group is calculated by multiplying the order of the two parameter 

groups.  The final elements of the group are then determined by combining each of the terms 

in each of the groups as a combination pair as described in the Historical Description chapter 

and storing the result in a nx2 integer array, where n is the order of the cross product group.  

Every combination of the final elements is performed where the result of joining two 

combination pairs is the result of joining the elements of the pairs separately as also 

described in the Historical Description chapter. Therefore, every combination of final 

elements results in another final element.  The entry in the Cayley Table for each 

combination is equal to the position of the resulting final element in the array of final 

elements.

createInnerAutGroup Method
The final group generator method calculates the inner automorphism of group.  The 

method first calculates the inner automorphism for each element in the group creating at most 
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n temporary groupMatrix objects.  Each temporary groupMatrix object is calculated by the 

method createInnerAutFromElement which is passed the element to induce the inner 

automorphism as an integer parameter called element.  The temporary groupMatrix is then 

created by calculating every new element of the Cayley Table by replacing the current value 

of the table, x, with the value element • x• element-1.  Each of the temporary groupMatrix 

objects are compared to previous ones created to ensure that they are all unique.  Each of the 

groupMatrix objects is considered a final element in the inner automorphism group and is

added to an ArrayList of groupMatrix objects called innerGroups.  

The elements are combined using the method createInnerAutFromTwoElements into 

a temporary groupMatrix object nextGroup.  Each combination represents one cell in the 

Cayley Table where element in the Cayley Table coincides with a groupMatrix object in the 

ArrayList innerGroups.  Each groupMatrix object in the final element list can be represented 

by an element from the original group.  These elements are the elements used to form the 

inner automorpohism induced by that element.  The method 

createInnerAutFromTwoElements is passed the two elements, elmtA and elmtB, representing 

the groupMatrix objects being combined.  A new temporary group is created and returned by 

the method createInnerAutFromTwoElements by replacing every value x in the current 

Cayley Table with the value elmtA• elmtB • x• elmtB-1 • elmtA-1.  The groupMatrix object

returned from the method createInnerAutFromTwoElements is then compared to all of the 

groupMatrix objects stored in innerGroups.  The entry in the Cayley Table for the inner 

automorphism group nextGroup for each combination is equal to the position of the resulting 

final element in the ArrayList of final elements.  The instance of group is then updated to the 

inner automorphism group, groupNext which is used to update the display and is identified 

by the method that called createInnerAutGroup.

CLASS GROUPIDENTIFY

The groupIdentify class identifies the group that is passed to the class via a 

groupMatrix object.  Most of the code for this class was adapted directly from Gibbs’ 

original Pascal code and the methods in the class mirror most of the procedures and functions 

in Gibbs’ original code.  The method for identifying groups mirrors the five step process 

outlined in the Historical Description process.  Some of the major changes to the code 
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involve the use of the groupMatrix object and its analysis functionality particularly its ability 

to determine if a group is commutative, identification of the identity element, and 

identification of a specific element’s inverse.  

The identification process is also more generic so that more isomorphisms could be 

identified. In particular, the identification of the groups no longer requires the identity 

element be element 0 and many of the non-abelian groups of order 32 were added utilizing 

their Hall-Senior numbers.  In Gibbs’ code, the procedures to calculate the order structure of 

the group, to calculate the centers of the group, and to determine the normality of the 

subgroups specifically fixed the identity element as 0.  The code for the groupIdentify class 

utilized the groupMatrix method findIdentity method to make the process more generic.  

Once the identity of the group is identified, there were two possible avenues to adjust the 

Gibbs’ code in order to use any element as the identity. The first method would replace 

every element in the zeroth row and column with the corresponding element in the identity 

elements row and column.  Thus, if the identity element was ei, every element in row ei

would be swapped with every element in row 0, as well as every element in column ei would 

be swapped with every element in column 0.  This would create a group isomorphic to the 

original group, with the identity element as the zeroth element.  Swapping the rows and 

columns would take an additional 6n operations because each swap takes 3 operations and 

there are n row elements and n column elements to swap.  Thus, because the findIdentity 

method runs in O(n2), the overall operation also runs in O(n2).  The advantage of using this 

method is the remainder of Gibbs’ code could be used to further identify the group. 

However, by just using the findIdentity method and adjusting Gibbs’ code to use the results 

of the findIdentity method, the group table did not have to be changed during the 

identification process.  

Once a group has been identified, its name is stored in a private String field called 

name that can be retrieved with the method getName.  If the group cannot be identified, an 

error message is stored in name and a private boolean field, identified, is set to false to 

indicate the identification routine failed. The results stored in identified can be retrieved via 

the method isIdentified.

Appendix B, Cayley Table Code, is the code for the entire project.  It contains more 

information about each of the classes along with their fields and methods.
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CHAPTER 8

ADDITIONAL WORK

Another class was created in order to analyze the creation of groups via brute force 

and determine the number of isomorphisms there are when the identity is fixed as element 0.  

For example, the four Cayley Tables of order 3, when the identity is fixed at element 0, are 

shown in Figure 5.

Figure 5. Tables of order 3 with identity fixed at element 0.

However, only the table in the upper left hand corner is an actual group (Z3). The other 

tables, while each possesses an identity element, are not groups because they are all not 

associative.  For example, in the table in the upper right hand corner, the value of 

22)21( =•• , while the value of 0)22(1 =•• . 

The class groupPermutation was created to determine the number of Cayley Tables 

that were isomorphic to groups of a specific order.  Testing occurred for groups up to order 6.  

Further testing could not be performed on higher order systems because there were (n-1)!(n-1)

tables generated and analyzed for each order where n is the order of the group.  Therefore, 

while for order 3, there were (3-1)!(3-1) = 4 total tables to generate and analyze, for order 6 

there were (6-1)!(6-1) = 24,883,200,000 tables to generate and analyze.  

The tables were built by generating the n! permutations of a set of n numbers and 

using each of those sets of permutations in each row of the table.  This would fix the total 

number of tables to be generated at n!n.  However, only (n-1) elements needed to be 

permuted for groups of order n because the identity element was kept fixed at element 0.  
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Therefore, each row needed (n-1)! permutations generated for the remaining n-1 elements in 

each row.  Also, there were now only (n-1) total rows that required the permutations, since 

the first row was fixed due to the identity, the total number of tables that needed to be 

generated was reduced to (n-1)!(n-1).  Another methods used to reduce the number of tables 

generated was to ensure the columns contained elements as each row was added to the table.  

Nevertheless, the number of tables to analyze and identify as groups increased dramatically 

for every incremental increase in order of the groups.  All groups of the same order were 

analyzed and identified in one run.  Therefore, the results for groups Z4 and Z2 ⊕ Z2 were 

attained during the same test run of the class groupPermutation, while the results for the 

groups Z6 and D3 were also gathered at the same time.  The results for the groups of order 

less than six are shown in Table 3.

Table 3. Number of Cayley Tables for Groups of Order < 6

Group Name Order Total Number of Cayley Tables 

Generated

Number of Cayley 

Tables

Z3 3 4 1

Z4 4 216 3

Z2 ⊕ Z2, Klein-4 4 216 1

Z5 5 331,776 6

Z6 6 24,883,200,000 60

D3, S3 6 24,883,200,000 20

The class groupPermutation used the class PermutationGenerator22 to identify and 

create an ArrayList of n PermutationGenerator objects that contained all permutations of the 

integers 0 to n-1, where n is the order of the group.  The class groupPermutation also 

contains a private groupMatrix object, myGroup, to store the current Cayley Table being 

generated and a private groupIdentify object, groupNamer, to identify the name of the Cayley 

Table stored in myGroup if it contains a group.  Another private integer, groupCount, is also 

a field in groupPermutation that is used to keep track of the total number of groups identified 

  
22 Gilleland, Michael.  “Permutation Generator.” [http://www.merriampark.com/perm.htm].  March 2005.
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for a particular order.  Once the ArrayList of PermutationGroup objects is created, a method 

in groupPermutation is then called recursively to fill myGroup row by row.  The method’s 

parameters are the ArrayList of PermutationGroup objects and the number of rows in 

myGroup to fill.  Each row utilizes one of the PermutationGenerator objects and loops until 

all of the permutations generated by that object are tried.  After all the rows are filled, the 

groupMatrix analysis methods are checked to determine if it contains a group by ensuring the 

Caylet Table stored in myGroup had an identity element, had inverses for all the elements, 

and was associative.  If myGroup contained a group, it was then passed to groupNamer to be 

identified and the results were output to the screen.  

Some short cuts were developed to reduce the total number of Cayley Tables that had 

to be checked.  The first row was always kept as the identity and therefore, no other 

permutations were tried.  The permutations for each row had to start with the row number in 

order to ensure column 0 contained the identity element.  All other permutations for that row 

were skipped before filling in additional rows.  Also, as each new row was added, a check 

was performed to ensure that no element is repeated in a row.  If a column has an element 

repeated, the last row is removed and the next permutation for that row is tried.  

Due to the number of permutations of Cayley Tables that are possible only tables up 

to order 6 were tried.  It took 26 minutes for all permutations of groups of order 6 with the 

identity fixed at element 0 to be found.  In contrast, it took less than 1 second for all 

permutations of groups of order 5 with the identity fixed at element 0 to be found.
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CHAPTER 9

FUTURE WORK

There are two main areas of focus for future work:  expansion of the code, its 

capabilities, and usefulness and further analysis of groups and group theory to expand the 

current capability of the code to identify more groups.  

Currently, the code has basic analysis functionality to determine if a Cayley Table 

stored in a groupMatrix object contains a group, if the elements commute (i.e. the group is 

Abelian), as well as the ability to determine the inner automorphism of a group.  Expanding 

these capabilities with new functionality could quickly yield the ability to identify the center 

of a group as well as determine the subgroups of a group and if a subgroup is normal.  

Algorithms for these functions are already partially written in the groupIdentify code and 

used to analyze some of the non-Abelian groups of order 16.  For example, the method 

computeCenter in the class groupIdentify already determines the elements of a group that are 

in  the center of the group by calculating which elements commute with all other elements in 

a group.  Based upon the elements found to be in the center and the current Cayley Table an 

algorithm to generate the center of a group could quickly be added to the code and used for 

further analysis of higher order groups.  

An algorithm to determine the automorphism group of a group G, Aut(G), would also 

be useful.  Further investigation would be necessary to expand the capabilities of the 

groupCreator class to generate the automorphism group; however, automomphism groups are 

important factors in determining semi-direct products of a group as well as useful in further 

study abstract algebra concepts such as rings and fields.

Expanding the capability of the class groupIdentify to identify groups with orders 

similar to the functionality that tests for groups of order 2*p and p2.  This would yield 

quicker analysis of some groups than the current methodology for determining groups that 

are non-Abelian which focuses on order structure of the groups.  This is because the

differentiation of the groups by order structure breaks down at groups of order 16, and totally 

falls apart with groups of order 32 in which there are order structures that define six groups 
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that are isomorphically distinct.  One example of a new analysis method focuses on the 

theorem, if group G is of the order |pq|, where p, q are prime and p < q, G is isomorphic to 

either Zpq or if p | (q-1) then G could be isomorphic to Zp xo Zq.23  Since the first step of the 

groupIdentify identification process is to check for cyclic groups, this method could be used 

to determine specific non-Abelian groups before checking if the group is Abelian.  For the 

groups of order less than 32, this theorem works for not only the groups of order 2*p, but the 

group Z3 xo Z7 which is of order 21, while it shows why there is only the cyclic group for 

order 15.

Further group theory work is also necessary to complete and expand the list of groups 

that can be generated and identified.  Determining all generators and relationships for the 

non-Abelian groups of order 32 will require a much greater understanding of group theory; 

yet, remains an ideal goal to achieve.  Also, distinguishing between the groups and 

identifying the groups of order 32 will be a necessary feature of the groupIdentify class to 

complete.  While some groups of order 32 can now be identified, the current identification 

utilizes the numbering system of Hall and Senior24 to identify the classes with unique order 

structure.  Connecting the groups of order 32 with names based upon cross products or group 

characteristics (e.g. dihedral and dicyclic) remains to be done.  Also, only 10 of the 45 non-

Abelian groups had a unique order structure that allow for identification based upon the 

techniques used by Gibbs.  When the order structure and family number from Hall and 

Senior25 were combined to determine a group, 18 out of the total 45 non-Abelian groups 

could be identified.  Interestingly, one of the characteristics of groups with the same family 

number was that they had the same inner automorphism group.  Utilizing the inner 

automorphism group along with new functionality that could quickly be added to the Cayley 

Table code, such as group center and normality of subgroups, a larger number of the groups 

of order 32 should be easily identified.

Nevertheless, much work still remains because the order structure, center, inner 

automorphism, and determination of the normality of subgroups does not necessarily mean 

  
23 Charles Lanski, Concepts in Abstract Algebra, (Belmont, CA: Brooks Cole, 2005), 287.
24 Marshall Hall, Jr and James K. Senior, The Groups of Order 2n (n<=6), (New York: Macmillan, 1964).
25 Marshall Hall, Jr and James K. Senior, The Groups of Order 2n (n<=6), (New York: Macmillan, 1964).
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two groups are isomorphic.  For example, the group formed by the cross product of 

Z2 ⊕ Z2 ⊕ Quaternion, the group formed by the defined relationships a8 = b4 = λ and ba=a3b

and the group formed by the defined relationships a8 = b4 = λ and ba=a-1b, all form groups 

whose order structure (3 elements of order 2, 20 elements of order 4, and 8 elements of order 

8), center group (Z2 ⊕ Z2), and inner automorphism (D4) are identical as well as have 

subgroups that are not normal.  However, there Cayley Tables are very different.  The result 

is that we do not know if these groups are isomorphic.  This is made even more complicated 

because there are actually four groups through isomorphism with that order structure and 

inner automorphism.26 Functionality that tests two groups of the same order to determine if 

they are isomorphic would be extremely useful in determining if new defined relationships 

for higher order groups define groups which have not been identified.

  
26 Marshall Hall, Jr and James K. Senior, The Groups of Order 2n (n<=6), (New York: Macmillan, 1964).
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APPENDIX A

ALL GROUPS OF ORDER 2 TO 31 AND SOME 

GROUPS OF ORDER 32
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Table 4. All Groups of Order 2 to 31 and Some Groups of Order 3227,28

Order Group Name Abelian Defining Relations

2 Z2 Yes a2 = λ

3 Z3 Yes a3 = λ

4 Z4 Yes a4 = λ

Z2 ⊕ Z2, Klein-4 Yes a2 = b2 = λ, ba=ab

5 Z5 Yes a5 = λ

6 Z6 Yes a6 = λ

D3, S3 No a3 = b2 = λ, ba=a-1b

7 Z7 Yes a7 = λ

8 Z8 Yes a8 = λ

Z4 ⊕ Z2 Yes a4 = b2 = λ, ba=ab

Z2 ⊕ Z2 ⊕ Z2 Yes a2 = b2 = c2 = λ, ba=ab, ca=ac, cb=bc

D4 No a4 = b2 = λ, ba=a-1b

<2,2,2> or Quaternion No a4 = λ, b2 = a2, ba=a-1b

9 Z9 Yes a9 = λ

Z3 ⊕ Z3 Yes a3 = b3 = λ, ba=ab

10 Z10 Yes a10 = λ

D5 No a5 = b2 = λ, ba=a-1b

11 Z11 Yes a11 = λ

12 Z12 Yes a12 = λ

Z6 ⊕ Z2 Yes a6 = b2 = λ, ba=ab

D6 No a6 = b2 = λ, ba=a-1b

A4 No a2 = b2 = c3 = λ, ba=ab, ca = bc, cb = abc

  
27 David Gibbs, “Computer Generation and Identification of Groups of Order 2 to 31” (unpublished Math 

797 Project, San Diego State University, 1984), 5-9,13-15
28 H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed. (New York: 

Springer-Verlag, 1980), 134-135.
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<2,2,3> No a3 = b4 = λ, ba=a-1b

13 Z13 Yes a13 = λ

14 Z14 Yes a14 = λ

D7 No a7 = b2 = λ, ba=a-1b

15 Z15 Yes a15 = λ

16 Z16 Yes a16 = λ

Z8 ⊕ Z2 Yes a8 = b2 = λ, ba=ab

Z4 ⊕ Z4 Yes a4 = b4 = λ, ba=ab

Z4 ⊕ Z2 ⊕ Z2 Yes a4 = b2 = c2 = λ, ba=ab, ca=ac, cb=bc

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 Yes a4 = b2 = c2 = d2 = λ, ba=ab, ca=ac, 

da=ad, cb=bc, db=bd, dc=cd

Z2 ⊕ D4 No cross product

Z2 ⊕ Quaternion No cross product

D8 No a8 = b2 = λ, ba=a-1b

<2, 2, 4> or Q4 No a8 = λ, b2 = a4, ba=a-1b

Z4 xo Z4 No a4 = b4 = λ, ba=a-1b

Z8 xo Z2 No a8 = b2 = λ, ba=a5b

Z8 xi Z2 No a8 = b2 = λ, ba=a3b

Weird1 No a4 = b2 = c2 = λ. ba=ab, ca=ac, cb=aabc

Weird1 No a4 = b2 = c2 = λ. ba=ab, ca=abc-1, cb=bc

17 Z17 Yes a17 = λ

18 Z18 Yes a18 = λ

Z6 ⊕ Z3 Yes a6 = b3 = λ, ba=ab

Z3 ⊕ D3 No cross product

D9 No a9 = b2 = λ, ba=a-1b

<<3,3,3;2>> No a3 = b3 = c2 = λ. ba=ab, ca=a-1, cb=b-1c

19 Z19 Yes a19 = λ

20 Z20 Yes a20 = λ
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Z10 ⊕ Z2 Yes a10 = b2 = λ, ba=ab

D10 No a10 = b2 = λ, ba=a-1b

K-Metacyclic 20 No a5 = b4 = λ, ba=aab

<2,2,5> No a5 = b4 = λ, ba=a-1b

21 Z21 Yes a21 = λ

Z7 xo Z3 No a7 = b3 = λ, ba=aab

22 Z22 Yes a22 = λ

D11 No a11 = b2 = λ, ba=a-1b

23 Z23 Yes a23 = λ

24 Z24 Yes a24 = λ

Z12 ⊕ Z2 Yes a12 = b2 = λ, ba=ab

Z6 ⊕ Z2 ⊕ Z2 Yes a6 = b2 = c2 = λ, ba=ab, ca=ac, cb=bc

A4 ⊕ Z2 No Cross Product

D6 ⊕ Z2 No Cross Product

D4 ⊕ Z3 No Cross Product

Quaternion ⊕ Z3 No Cross Product

D3 ⊕ Z4 No Cross Product

<2,2,3>⊕ Z2 No Cross Product

D12 No a12 = b2 = λ, ba=a-1b

S4 No a2 = b2 = c3 = d2 = λ, ba=ab, ca=abc, 

da=ad, cb=ac, db=abd, dc=c-1d

<2,3,3> No a4 = c3 = λ, b2=a2, ba=a-1b, ca=bc, cb=abc

<4, 6 | 2, 2> No a4 = b6 = λ, ba-1=ab-1, ba=a-1b-1

<-2, 2, 3> No a3 = b8 = λ, ba=a-1b

<2, 2, 6> No a12 = λ, b2 = a6,  ba=a-1b

25 Z25 Yes a25 = λ

Z5 ⊕ Z5 Yes a5 = b5 = λ, ba=ab

26 Z26 Yes a26 = λ
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D13 No a13 = b2 = λ, ba=a-1b

27 Z27 Yes a27 = λ

Z9 ⊕ Z3 Yes a9 = b3 = λ, ba=ab

Z3 ⊕ Z3 ⊕ Z3 Yes a3 = b3 = c3 = λ, ba=ab, ca=ac, cb=bc

<3. 3 | 3, 3> No a3 = b3 = c3 = λ, ba=ab, ca=ac, cb=aabbc

Weird27 No a9 = b3 = λ, ba=aaaab

28 Z28 Yes a28 = λ

Z14 ⊕ Z2 Yes a14 = b2 = λ, ba=ab

D14 No a14 = b2 = λ, ba=a-1b

<2, 2, 7> No a7 = b4 = λ, ba=a-1b

29 Z29 Yes a29 = λ

30 Z30 Yes a30 = λ

D5 ⊕ Z3 No Cross Product

D3 ⊕ Z5 No Cross Product

D15 No a15 = b2 = λ, ba=a-1b

31 Z31 Yes a31 = λ

32 Z32 Yes a32 = λ

Z16 ⊕ Z2 Yes a16 = b2 = λ, ba=ab

Z8 ⊕ Z4 Yes a8 = b4 = λ, ba=ab

Z8 ⊕ Z2 ⊕ Z2 Yes a8 = b2 = c2 = λ, ba=ab, ca=ac, cb=bc

Z4 ⊕ Z4 ⊕ Z2 Yes a4 = b4 = c2 = λ, ba=ab, ca=ac, cb=bc

Z4 ⊕ Z2 ⊕ Z2 ⊕ Z2 Yes a4 = b2 = c2 = d2 = λ, ba=ab, ca=ac, 

da=ad, cb=bc, db=bd, dc=cd

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 Yes a2 = b2 = c2 = d2 = f2 = λ, ba=ab, ca=ac, 

da=ad, fa=af, cb=bc, db=bd, fb=bf, 

dc=cd, fc=cf, fd=df

Z2 ⊕ Z2 ⊕ D4 No Cross Product

Z2 ⊕ Z2 ⊕ Quaternion No Cross Product
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Z2 ⊕ D8 No Cross Product

Z2 ⊕ Q4 No Cross Product

Z2 ⊕ Z4 xo Z4 No Cross Product

Z2 ⊕ Z8 xo Z2 No Cross Product

Z2 ⊕ Z8 xi Z2 No Cross Product

Z2 ⊕ Weird1 No Cross Product

Z2 ⊕ Weird1 No Cross Product

Z4 ⊕ D4 No Cross Product

Z4 ⊕ Quaternion No Cross Product

D16 No a16= b2 = λ, ba=a-1b

<2, 2, 8> No a16 = λ, b2 = a8, ba=a-1b

Z16 xo Z2 No a16= b2 = λ, ba=a9b

Z16 xi Z2 No a16= b2 = λ, ba=a7b
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APPENDIX B

CODE
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MAIN.JAVA

/*
* Main.java
*
* Created on January 16, 2005, 1:12 PM
*/

package cayleytable;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
/**
* Main class for use in running the Cayley Table generation and 
* identification software from a command line.
* @author Jeffrey Barr
*/
public class Main {

 
/**
* Main class instantiates a <CODE>groupMainFrame</CODE> class to open
* the user interface via a call to the Main class when the jar file 

is 
* added to the class path.
*/
public Main() {

groupMainFrame app = new groupMainFrame();
app.addWindowListener(new WindowAdapter()

{
public void windowClosing( WindowEvent e )
{

System.exit(0);
}

}
 );               
}

 /**
* Main class instantiates a <CODE>groupMainFrame</CODE> class to open
* the user interface via a call from the command line.
* @param args Command line arguments
*/
public static void main(String[] args) {

groupMainFrame app = new groupMainFrame();
app.addWindowListener(new WindowAdapter()

{
public void windowClosing( WindowEvent e )
{

System.exit(0);
}

}
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 );               

}
 

}

GROUPMAIN.JAVA
/*
* groupMain.java
*
* Created on January 16, 2005, 1:19 PM
*/

package cayleytable;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
/**
* Main Frame of Cayley table viewer for use when tool is run as a
* standlone program.  See <CODE>groupMain</CODE> for identical version
* in applet format.  User inteface that contains <CODE>groupPanel</CODE>
* that displays Cayley Table and buttons to generate and analyze a 
* Cayley Table.
* @author Jeffrey Barr
*/
public class groupMain extends javax.swing.JApplet {

 
/**
* Initializes the applet <CODE>groupMainFrame</CODE> through call to 

initialize all
* of the components in the applet.
*/
public void init() {

try {
java.awt.EventQueue.invokeAndWait(new Runnable() {

public void run() {
initComponents();

}
});

} catch (Exception ex) {
ex.printStackTrace();
System.out.println("Error: " + ex.getLocalizedMessage());

}
}
 
/**
* This method is called from within the <CODE>init()</CODE>method to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
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* Code generated via Netbeans.
*/
private void initComponents() {//GEN-BEGIN:initComponents

java.awt.GridBagConstraints gridBagConstraints;

groupNamer = new cayleytable.groupIdentify();
myCreator = new cayleytable.groupCreator();
lblGroupName = new javax.swing.JLabel();
myGroup = new cayleytable.groupPanel();
lblResultsOfAnalysis = new javax.swing.JLabel();
lblPropertyButtons = new javax.swing.JLabel();
btnCheckGroup = new javax.swing.JButton();
btnCheckAbel = new javax.swing.JButton();
btnCheckName = new javax.swing.JButton();
btnInnerAut = new javax.swing.JButton();
lblGeneratorButtons = new javax.swing.JLabel();
btnZnGroup = new javax.swing.JButton();
btnXProdGroup = new javax.swing.JButton();
btnUserDefinedGroup = new javax.swing.JButton();
btnDefRelnGroup = new javax.swing.JButton();

getContentPane().setLayout(new java.awt.GridBagLayout());

  
lblGroupName.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);

lblGroupName.setText(groupNamer.getName());
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 0;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.weightx = 1.0;
getContentPane().add(lblGroupName, gridBagConstraints);

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 1;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.weighty = 1.0;
getContentPane().add(myGroup, gridBagConstraints);

 
lblResultsOfAnalysis.setHorizontalAlignment(javax.swing.SwingConstants.CEN
TER);

lblResultsOfAnalysis.setEnabled(false);
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 11;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.weightx = 1.0;
getContentPane().add(lblResultsOfAnalysis, gridBagConstraints);
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lblPropertyButtons.setHorizontalAlignment(javax.swing.SwingConstants.LEFT)
;

lblPropertyButtons.setText("Check Group Properties:");
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 12;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.RELATIVE;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(lblPropertyButtons, gridBagConstraints);

btnCheckGroup.setText("Check if Group");
btnCheckGroup.addActionListener(new 

java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {

checkIfGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnCheckGroup, gridBagConstraints);

btnCheckAbel.setText("Check if Abelian");
btnCheckAbel.addActionListener(new java.awt.event.ActionListener() 

{
 public void actionPerformed(java.awt.event.ActionEvent evt) {

checkIfAbelian(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnCheckAbel, gridBagConstraints);

btnCheckName.setText("Find Group Name");
btnCheckName.addActionListener(new java.awt.event.ActionListener() 

{
public void actionPerformed(java.awt.event.ActionEvent evt) {

findGroupName(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnCheckName, gridBagConstraints);

btnInnerAut.setText("Find Inner Automorphism");
btnInnerAut.addActionListener(new java.awt.event.ActionListener() 

{
public void actionPerformed(java.awt.event.ActionEvent evt) {

createInnerAutGroup(evt);



56

}
});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnInnerAut, gridBagConstraints);

 
lblGeneratorButtons.setHorizontalAlignment(javax.swing.SwingConstants.LEFT
);

lblGeneratorButtons.setText("Choose Type of Group to Enter:");
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 14;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.RELATIVE;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(lblGeneratorButtons, gridBagConstraints);

btnZnGroup.setText("Cyclic Group");
btnZnGroup.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
createZnGroup(evt);

}
});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnZnGroup, gridBagConstraints);

btnXProdGroup.setText("Cross Product Group");
btnXProdGroup.addActionListener(new 

java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

createXProdGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnXProdGroup, gridBagConstraints);

btnUserDefinedGroup.setText("User Defined Group");
btnUserDefinedGroup.addActionListener(new 

java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {

createUserEntryGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;



57

getContentPane().add(btnUserDefinedGroup, gridBagConstraints);

btnDefRelnGroup.setText("Defined Relationship Group");
btnDefRelnGroup.addActionListener(new 

java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

createDefinedRelationshipGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnDefRelnGroup, gridBagConstraints);

}//GEN-END:initComponents

/**
* Method to create the groups based upon a defined relationship calls
* the <CODE>groupCreator</CODE> object functionality to create and 

store the group.
* 
* The group is named by <CODE>groupNamer</CODE> 

<CODE>groupIdentify</CODE> object after creation.
* @param evt Launched by the push of <CODE>btnDefRelnGroup</CODE>.
*/
private void createDefinedRelationshipGroup(java.awt.event.ActionEvent 

evt) {//GEN-FIRST:event_createDefinedRelationshipGroup
ArrayList<String> generatorList = new ArrayList<String>();
ArrayList<groupRelation> definedRelationships = new 

ArrayList<groupRelation>();

String defRelName = "Group Table:  Defined Relationship";

// Determine number of generators to be used and error check that it 
is a legal value

String defRelString = JOptionPane.showInputDialog(null,
"Enter the number of generators 

in the defined relationship. ",
"Defined Relationship Dialog",
JOptionPane.QUESTION_MESSAGE);

int defRelNumOfGenerators = -1;
int numRelationships;
try 

{
defRelNumOfGenerators = Integer.parseInt(defRelString, 10);

 }
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

defRelString + " is not a legal 
number!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
blnGroupCreated = false;
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return;
}

numRelationships = factorial(defRelNumOfGenerators);
System.out.println("Defining Relationships");
if (defRelNumOfGenerators < 2)

{
JOptionPane.showMessageDialog(null,

 "You cannot create a defined 
relationship with less" +

" than two groups.", "Defined 
Relationship Error",

JOptionPane.ERROR_MESSAGE);
blnGroupCreated = false;

return;
}

// Determine the number of elements in each generator
String elementString;
for (int n=0; n<defRelNumOfGenerators; n++)

{
elementString = JOptionPane.showInputDialog(null,

"Enter the number of 
elements in generator " + n,

"Element Query Dialog",
 

JOptionPane.QUESTION_MESSAGE);

// Ensure element string is an integer
try 

{
Integer.parseInt(elementString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

elementString + " is not a legal 
number!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
n = n-1;
continue;

}
 

generatorList.add(elementString);
definedRelationships.add(new groupRelation(n, 

Integer.parseInt(elementString,10)));
}

boolean extraRelation = true;
while (extraRelation)

{
String question = JOptionPane.showInputDialog(null,

"Do you have an extra 
relationship between generators?\n"
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+ "  Enter yes/no. ",
"Relationship Dialog",
 

JOptionPane.QUESTION_MESSAGE);
question = question.toLowerCase();
if (question.compareTo("yes") == 0 || question.compareTo("y") 

== 0)
{
String relationship = JOptionPane.showInputDialog(null,

"Enter the extra 
relationship.",

"Relationship 
Dialog",

 
JOptionPane.QUESTION_MESSAGE);

groupRelation extra = new groupRelation(relationship, 
generatorList);

boolean foundMatch = false;
for (int i=0; i<definedRelationships.size(); i++)

{
groupRelation tempRel = (groupRelation) 

definedRelationships.get(i);
if (extra.getLeft().compareTo(tempRel.getLeft()) 

== 0)
{
definedRelationships.set(i, extra);
foundMatch = true;

}
}

if (!foundMatch) definedRelationships.add(extra);
}

else
extraRelation = false;

}

for (int i=0; i<defRelNumOfGenerators-1; i++)
{
for (int j=i+1; j<defRelNumOfGenerators; j++)

{
definedRelationships.add(new groupRelation(j, i, 

getNextRelationship(i,j), generatorList));
}

}

System.out.println("Relationships Defined");
for (int j=0; j<definedRelationships.size(); j++)

{
groupRelation temp = (groupRelation) 

definedRelationships.get(j);
System.out.println(j + ": " + temp.getLeft() + " = " + 

temp.getRight());
}

System.out.println("Relationships Defined twice");
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if (myCreator.createDefineRelationGroup(generatorList, 
definedRelationships))

{
myGroup.updateTable(myCreator.getGroup(), false);
System.out.println("Attempting to identify group");
findGroupName(evt);

lblResultsOfAnalysis.setEnabled(false);
lblResultsOfAnalysis.setText("");

blnGroupCreated = true;
}

else
{

lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setBackground(Color.white);
lblResultsOfAnalysis.setForeground(Color.RED);
lblResultsOfAnalysis.setText("Error:  No Defined Relationship 

Group Found");
System.out.println("No Defined Relationship Group Found");

blnGroupCreated = false;
}

}//GEN-LAST:event_createDefinedRelationshipGroup

/**
* Method to allow user to enter group of defined order calls
* the <CODE>groupCreator</CODE> object functionality to create and 

store the group.
* @param evt Launched by the push of 

<CODE>btnUserDefinedGroup</CODE>.
*/
private void createUserEntryGroup(java.awt.event.ActionEvent evt) 

{//GEN-FIRST:event_createUserEntryGroup
String orderString = JOptionPane.showInputDialog(null,

"Enter the size of the group 
you would like to create.",

"User Group Dialog",
JOptionPane.QUESTION_MESSAGE);

int order = 0;
try 

{
order = Integer.parseInt(orderString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

orderString + " is not a legal 
number!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
return;

}
if (order > 1)

{
if (!myCreator.createEmptyGroup(order))

{
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JOptionPane.showMessageDialog(null,
"Error generating an empty group 

of order " + 
orderString + ".\nNO GROUP WAS 

GENERATED",
"Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

}
myGroup.updateTable(myCreator.getGroup(), true);
lblResultsOfAnalysis.setText("");

}
else

{
JOptionPane.showMessageDialog(null, 

"The group order must be an integer 
greater than 1.",

"Number Error", 
JOptionPane.ERROR_MESSAGE);

}

lblGroupName.setText("Group Table:  User Defined");
lblResultsOfAnalysis.setEnabled(false);
lblResultsOfAnalysis.setText("");

}//GEN-LAST:event_createUserEntryGroup

/**
* Method to create the groups based upon a cross product of at 
* least two other groups calls the <CODE>groupCreator</CODE> object 
* functionality to create and store the group.
* 
*  The group is named by <CODE>groupNamer</CODE> 

<CODE>groupIdentify</CODE> object after creation.
* @param evt Launched by the push of <CODE>btnXProdGroup</CODE>.
*/
private void createXProdGroup(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_createXProdGroup
cayleytable.groupMatrix myGroup1 = new cayleytable.groupMatrix(0);
cayleytable.groupMatrix myGroup2 = new cayleytable.groupMatrix(0);

String XProdName = "Group Table:  ";
String XProdString = JOptionPane.showInputDialog(null,

"Enter the number of groups in 
the cross product. ",

"Cross Product Dialog",
JOptionPane.QUESTION_MESSAGE);

int XProdNumOfGroups = -1;
try 

{
XProdNumOfGroups = Integer.parseInt(XProdString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

XProdString + " is not a legal 
number!" +

"\nError: " + e.getMessage(),
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"Number Error", 
JOptionPane.ERROR_MESSAGE);

return;
}

if (XProdNumOfGroups <= 1)
{
JOptionPane.showMessageDialog(null,

"You cannot create a cross product 
with less" +

" than two groups.", "Cross Product 
Error",

JOptionPane.ERROR_MESSAGE);
return;

}

String choice = JOptionPane.showInputDialog(null,
"Enter 1 if first group is a 

Cyclic group, else enter 2 for a Defined Relationship. ",
"Cross Product Choice Dialog",
JOptionPane.QUESTION_MESSAGE);

if (choice.equals("1"))
{

if (createNextCyclicGroup())
XProdNumOfGroups = XProdNumOfGroups - 1;

else
return;

}
else if (choice.equals("2"))

{
createDefinedRelationshipGroup(evt);

if (blnGroupCreated)
XProdNumOfGroups = XProdNumOfGroups - 1;

else
return;

}
else

{
JOptionPane.showMessageDialog(null,

"You must select either a Cyclic group 
or defined relationship",

"Cross Product Error",
JOptionPane.ERROR_MESSAGE);

return;
}

while (XProdNumOfGroups > 0)
{
myGroup1.resetGroup(myCreator.getGroup());

choice = JOptionPane.showInputDialog(null,
"Enter 1 if next group is a 

Cyclic group, else enter 2 for a Defined Relationship. ",
"Cross Product Choice Dialog",
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JOptionPane.QUESTION_MESSAGE);
if (choice.equals("1"))

{
if (createNextCyclicGroup())

myGroup2.resetGroup(myCreator.getGroup());
 else 

return;
}

else if (choice.equals("2"))
{

createDefinedRelationshipGroup(evt);
if (blnGroupCreated)

myGroup2.resetGroup(myCreator.getGroup());
else

return;
}

else
{
JOptionPane.showMessageDialog(null,

"You must select either a Cyclic 
group or defined relationship",

"Cross Product Error",
JOptionPane.ERROR_MESSAGE);

return;
}

if (!myCreator.createXProdGroup(myGroup1, myGroup2))
{
JOptionPane.showMessageDialog(null,

"Error generating a Cross 
Product" +

" Group.\nNO GROUP WAS 
GENERATED",

 "Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

return;
}

XProdNumOfGroups = XProdNumOfGroups - 1;
}

myGroup.updateTable(myCreator.getGroup(), false);
findGroupName(evt);
blnGroupCreated = true;
lblResultsOfAnalysis.setEnabled(false);

lblResultsOfAnalysis.setText("");
}//GEN-LAST:event_createXProdGroup

/**
* Method to create a cyclic group of a user defined size calls the 
* <CODE>groupCreator</CODE> object functionality to create and store 

the group.
* 
* The group is named by <CODE>groupNamer</CODE> 

<CODE>groupIdentify</CODE> object after creation.
* @param evt Launched by the push of <CODE>btnZnGroup</CODE>.
*/
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private void createZnGroup(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_createZnGroup

if (createNextCyclicGroup())
{
myGroup.updateTable(myCreator.getGroup(), false);
findGroupName(evt);

blnGroupCreated = true;
}

lblResultsOfAnalysis.setEnabled(false);
 lblResultsOfAnalysis.setText("");
}//GEN-LAST:event_createZnGroup

/**
* Method to call functionality in <CODE>groupCreator</CODE> to create 

the 
* inner automorphism of the current group currently stored in 

<CODE>myCreator</CODE>
 * <CODE>groupMatrix</CODE> object.
* 
* The group replaces what is stored in <CODE>myGroup</CODE> 

<CODE>groupCreator</CODE> object 
* and named by <CODE>groupIdentify</CODE> after creation.
* @param evt Launched by the push of <CODE>btnInnerAut</CODE>.
*/
private void createInnerAutGroup(java.awt.event.ActionEvent evt) 

{//GEN-FIRST:event_createInnerAutGroup
if (!myCreator.resetGroup(myGroup.getGroup())

|| !myCreator.getGroup().checkForIdentity()
|| !myCreator.getGroup().checkForInverse()
|| !myCreator.getGroup().checkIfAssociative())
{
JOptionPane.showMessageDialog(null,

"Error generating an Inner 
Automorphism" +

" Group.\nRequires Initial Legal 
Group",

"Illegal Group Error", 
JOptionPane.ERROR_MESSAGE);

return;
}

if (myCreator.createInnerAutGroup())
{
myGroup.updateTable(myCreator.getGroup(), false);
findGroupName(evt);
lblResultsOfAnalysis.setBackground(Color.white);
lblResultsOfAnalysis.setForeground(Color.BLUE);

lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setText("Inner Automorphism Found:  " + 

groupNamer.getName());
}

else
{

lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setBackground(Color.white);
lblResultsOfAnalysis.setForeground(Color.RED);
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lblResultsOfAnalysis.setText("Error:  No Inner Automorphism 
Group Found");

System.out.println("No Inner Automorphism Group Found");
}

 
}//GEN-LAST:event_createInnerAutGroup

/**
*  Method to name the group stored in <CODE>myCreator</CODE> 

<CODE>groupCreator</CODE> object with the 
* <CODE>groupNamer</CODE> <CODE>groupIdentify</CODE> object and 

displays the results on
* <CODE>lblGroupName</CODE> JLabel object.
* @param evt Launched by the push of <CODE>btnCheckName</CODE>.
*/
private void findGroupName(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_findGroupName
lblResultsOfAnalysis.setEnabled(true);
lblGroupName.setEnabled(false);

lblResultsOfAnalysis.setBackground(Color.yellow);
lblResultsOfAnalysis.setForeground(Color.red);
if (!myCreator.resetGroup(myGroup.getGroup()))

lblGroupName.setText("Group Table: This is not a Group");
else if (!myCreator.getGroup().checkForIdentity())

lblGroupName.setText("Group Table: This is not a Group");
else if (!myCreator.getGroup().checkForInverse())

lblGroupName.setText("Group Table: This is not a Group");
else if (!myCreator.getGroup().checkIfAssociative())

lblGroupName.setText("Group Table: This is not a Group");
else

{
lblResultsOfAnalysis.setEnabled(false);

groupNamer.resetGroupIdentify(myCreator.getGroup());
lblGroupName.setEnabled(true);

lblGroupName.setText("Group Table: " + groupNamer.getName());
}

}//GEN-LAST:event_findGroupName

/**
* Method to determine if the table stored in the 

<CODE>myCreator</CODE> <CODE>groupCreator</CODE> 
* object is an Abelian group using the analysis functions that are a 

part of <CODE>groupMatrix</CODE>
* and displays the results on <CODE>lblResultsOfAnalysis</CODE> 

JLabel object.
* @param evt Launched by the push of <CODE>btnCheckAbel</CODE>.
*/
private void checkIfAbelian(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_checkIfAbelian
lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setBackground(Color.YELLOW);
lblResultsOfAnalysis.setForeground(Color.RED);
 
if (!myCreator.resetGroup(myGroup.getGroup()))

lblResultsOfAnalysis.setText("The table is not a group because 
there currently is no table to check!");
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else if (!myCreator.getGroup().checkForIdentity())
lblResultsOfAnalysis.setText("The table is not a group because 

it does not have an identity element");
else if (!myCreator.getGroup().checkForInverse())

lblResultsOfAnalysis.setText("The table is not a group because 
it does not have an inverse for each element");

else if (!myCreator.getGroup().checkIfAssociative())
lblResultsOfAnalysis.setText("The table is not a group because 

it is not associative");
else if (!myCreator.getGroup().checkIfCommutative())

lblResultsOfAnalysis.setText("The table is not an Abeliain 
Group because it is not communative");

else
{

lblResultsOfAnalysis.setForeground(Color.BLUE);
lblResultsOfAnalysis.setText("The table is an Abelian 

Group.");
}
 

}//GEN-LAST:event_checkIfAbelian

/**
* Method to determine if the table stored in the 

<CODE>myCreator</CODE> <CODE>groupCreator</CODE> 
* object is a group using the analysis functions that are a part of 

<CODE>groupMatrix</CODE>
* and displays the results on <CODE>lblResultsOfAnalysis</CODE> 

JLabel object.
* @param evt Launched by the push of <CODE>btnCheckGroup</CODE>.
*/
private void checkIfGroup(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_checkIfGroup
lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setBackground(Color.yellow);
lblResultsOfAnalysis.setForeground(Color.red);
 
if (!myCreator.resetGroup(myGroup.getGroup()))

lblResultsOfAnalysis.setText("The table is not a group because 
there currently is no table to check!");

else if (!myCreator.getGroup().checkForIdentity())
lblResultsOfAnalysis.setText("The table is not a group because 

it does not have an identity element");
else if (!myCreator.getGroup().checkForInverse())

lblResultsOfAnalysis.setText("The table is not a group because 
it does not have an inverse for each element");

else if (!myCreator.getGroup().checkIfAssociative())
lblResultsOfAnalysis.setText("The table is not a group because 

it is not associative");
else
{

lblResultsOfAnalysis.setForeground(Color.blue);
lblResultsOfAnalysis.setText("The table is a group.");

}
}//GEN-LAST:event_checkIfGroup
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// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton btnCheckAbel;
private javax.swing.JButton btnCheckGroup;
private javax.swing.JButton btnCheckName;
private javax.swing.JButton btnDefRelnGroup;
 private javax.swing.JButton btnInnerAut;
 private javax.swing.JButton btnUserDefinedGroup;
private javax.swing.JButton btnXProdGroup;
private javax.swing.JButton btnZnGroup;
private cayleytable.groupIdentify groupNamer;

 private javax.swing.JLabel lblGeneratorButtons;
private javax.swing.JLabel lblGroupName;
private javax.swing.JLabel lblPropertyButtons;
private javax.swing.JLabel lblResultsOfAnalysis;
private cayleytable.groupCreator myCreator;
private cayleytable.groupPanel myGroup;
// End of variables declaration//GEN-END:variables
/**
* Boolean variable used by 

<CODE>createDefinedRelationshipGroup</CODE>, 
* <CODE>createXProdGroup</CODE>, and <CODE>createZnGroup</CODE> 

methods to identify if
* a new group was successfully created.
*/
private boolean blnGroupCreated;
 
/**
* Method used to request the "pseudo" commutative defined 

relationships
* from the user for use in the 

<CODE>createDefinedRelationshipGroup</CODE> method.
* @param a Value representing one subgroup in relationship ba=?? where 

?? is the new relationship.
* @param b Value representing second subgroup in relationship ba=?? 

where ?? is the new relationship.
* @return String object containing the right hand side of the "pseudo" 

commutative relationship
*/
public String getNextRelationship(int a, int b)
{
String relationship = JOptionPane.showInputDialog(null,

"Enter the relationship for " + 
(char)((char)b+97) + (char)((char)a+97) +

"\na represents group 1, b represents 
group 2, etc." +

"\nA is the inverse of a, B is the 
inverse of b, etc.",

"Relationship Dialog",
JOptionPane.QUESTION_MESSAGE);

int length = relationship.length();

if (length < 2) return relationship;

for (int i=0; i<length-1; i++)
{
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for (int j=i+1; j<length; j++)
{
if ((int) relationship.toLowerCase().charAt(i) > (int) 

relationship.toLowerCase().charAt(j))
{
JOptionPane.showMessageDialog(null,

"Error in relationship 
order.  Must order elements " +

"so that letters are in 
alphabetical order.",

"Relationship Error", 
 

JOptionPane.ERROR_MESSAGE);
return null;

}
}

}

return relationship;
}

 
/**
* Method used to create the actual cyclic group that is used by
* the <CODE>createZnGroup</CODE> and <CODE>createXProdGroup</CODE> 

methods.
* @return Result identifying if a new Cyclic group was successfully 

created.
*/
private boolean createNextCyclicGroup()
{

String ZnOrderString = JOptionPane.showInputDialog(null,
"Enter the order for the Cyclic 

Group. ",
"Cyclic Group Dialog",
JOptionPane.QUESTION_MESSAGE);

int ZnOrder = -1;

try 
{
ZnOrder = Integer.parseInt(ZnOrderString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

ZnOrderString + " is not a legal 
number!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
return false;

}
if (ZnOrder > 0)

{
if (!myCreator.createCyclicGroup(ZnOrder))
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{
JOptionPane.showMessageDialog(null,

"Error generating a Z" + 
ZnOrderString +

" Group.\nNO GROUP WAS 
GENERATED",

"Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

return false;
}

lblResultsOfAnalysis.setText("");
return true;

}
else return false;

}

/**
* Method to calculate the factorial of an integer
* @param n Integer for which the factorial is calculated
* @return Factorial of n
*/
private int factorial(int n)
{
if (n <= 0) return 1;
else return n * factorial(n-1);

}

}

GROUPMAIN.JAVA
/*
* groupMain.java
*
* Created on January 16, 2005, 1:19 PM
*/

package cayleytable;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
/**
* Main Frame of Cayley table viewer for use when tool is run as a
* standlone program.  See <CODE>groupMain</CODE> for identical version
* in applet format.  User inteface that contains <CODE>groupPanel</CODE>
* that displays Cayley Table and buttons to generate and analyze a 
* Cayley Table.
* @author Jeffrey Barr
*/
public class groupMainFrame extends javax.swing.JFrame {
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/**
* Initializes the Frame <CODE>groupMainFrame</CODE> through call to 

initialize all
* of the components in the Frame.
*/
public groupMainFrame() {

initComponents();
setVisible(true);

}
 
/**
* This method is called from within the 

<CODE>groupMainFrame()</CODE>method to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
* Code generated via Netbeans.
*/
private void initComponents() {//GEN-BEGIN:initComponents

java.awt.GridBagConstraints gridBagConstraints;

groupNamer = new cayleytable.groupIdentify();
myCreator = new cayleytable.groupCreator();
lblGroupName = new javax.swing.JLabel();
myGroup = new cayleytable.groupPanel();
lblResultsOfAnalysis = new javax.swing.JLabel();
lblPropertyButtons = new javax.swing.JLabel();
btnCheckGroup = new javax.swing.JButton();
btnCheckAbel = new javax.swing.JButton();
btnCheckName = new javax.swing.JButton();
btnInnerAut = new javax.swing.JButton();
lblGeneratorButtons = new javax.swing.JLabel();
btnZnGroup = new javax.swing.JButton();
btnXProdGroup = new javax.swing.JButton();
btnUserDefinedGroup = new javax.swing.JButton();
btnDefRelnGroup = new javax.swing.JButton();

getContentPane().setLayout(new java.awt.GridBagLayout());

 
lblGroupName.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);

lblGroupName.setText(groupNamer.getName());
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 0;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.weightx = 1.0;
getContentPane().add(lblGroupName, gridBagConstraints);

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 1;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.REMAINDER;
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gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.weighty = 1.0;
getContentPane().add(myGroup, gridBagConstraints);

 
lblResultsOfAnalysis.setHorizontalAlignment(javax.swing.SwingConstants.CEN
TER);

lblResultsOfAnalysis.setEnabled(false);
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 11;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.weightx = 1.0;
getContentPane().add(lblResultsOfAnalysis, gridBagConstraints);

 
lblPropertyButtons.setHorizontalAlignment(javax.swing.SwingConstants.LEFT)
;

 lblPropertyButtons.setText("Check Group Properties:");
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 12;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.RELATIVE;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(lblPropertyButtons, gridBagConstraints);

btnCheckGroup.setText("Check if Group");
btnCheckGroup.addActionListener(new 

java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

checkIfGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnCheckGroup, gridBagConstraints);

btnCheckAbel.setText("Check if Abelian");
btnCheckAbel.addActionListener(new java.awt.event.ActionListener() 

{
public void actionPerformed(java.awt.event.ActionEvent evt) {

checkIfAbelian(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnCheckAbel, gridBagConstraints);

btnCheckName.setText("Find Group Name");
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btnCheckName.addActionListener(new java.awt.event.ActionListener() 
{

public void actionPerformed(java.awt.event.ActionEvent evt) {
findGroupName(evt);

}
});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnCheckName, gridBagConstraints);

btnInnerAut.setText("Find Inner Automorphism");
btnInnerAut.addActionListener(new java.awt.event.ActionListener() 

{
public void actionPerformed(java.awt.event.ActionEvent evt) {

createInnerAutGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 13;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnInnerAut, gridBagConstraints);

 
lblGeneratorButtons.setHorizontalAlignment(javax.swing.SwingConstants.LEFT
);

lblGeneratorButtons.setText("Choose Type of Group to Enter:");
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 14;
gridBagConstraints.gridwidth = 

java.awt.GridBagConstraints.RELATIVE;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(lblGeneratorButtons, gridBagConstraints);

btnZnGroup.setText("Cyclic Group");
btnZnGroup.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
createZnGroup(evt);

}
});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnZnGroup, gridBagConstraints);

btnXProdGroup.setText("Cross Product Group");
btnXProdGroup.addActionListener(new 

java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

createXProdGroup(evt);
}

});
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gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnXProdGroup, gridBagConstraints);

btnUserDefinedGroup.setText("User Defined Group");
btnUserDefinedGroup.addActionListener(new 

java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

createUserEntryGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnUserDefinedGroup, gridBagConstraints);

btnDefRelnGroup.setText("Defined Relationship Group");
btnDefRelnGroup.addActionListener(new 

java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

createDefinedRelationshipGroup(evt);
}

});

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridy = 15;
gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;
getContentPane().add(btnDefRelnGroup, gridBagConstraints);

java.awt.Dimension screenSize = 
java.awt.Toolkit.getDefaultToolkit().getScreenSize();

setBounds((screenSize.width-650)/2, (screenSize.height-700)/2, 
650, 700);

}//GEN-END:initComponents

/**
* Method to create the groups based upon a defined relationship calls
* the <CODE>groupCreator</CODE> object functionality to create and 

store the group.
* 
* The group is named by <CODE>groupNamer</CODE> 

<CODE>groupIdentify</CODE> object after creation.
* @param evt Launched by the push of <CODE>btnDefRelnGroup</CODE>.
*/
private void createDefinedRelationshipGroup(java.awt.event.ActionEvent 

evt) {//GEN-FIRST:event_createDefinedRelationshipGroup
ArrayList<String> generatorList = new ArrayList<String>();
ArrayList<groupRelation> definedRelationships = new 

ArrayList<groupRelation>();

String defRelName = "Group Table:  Defined Relationship";
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// Determine number of generators to be used and error check that it 
is a legal value

String defRelString = JOptionPane.showInputDialog(null,
"Enter the number of generators 

in the defined relationship. ",
"Defined Relationship Dialog",
JOptionPane.QUESTION_MESSAGE);

int defRelNumOfGenerators = -1;
int numRelationships;
try 

{
defRelNumOfGenerators = Integer.parseInt(defRelString, 10);

 }
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

defRelString + " is not a legal 
integer!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
blnGroupCreated = false;

return;
}

numRelationships = factorial(defRelNumOfGenerators);
System.out.println("Defining Relationships");
if (defRelNumOfGenerators < 2)

{
JOptionPane.showMessageDialog(null,

"You cannot create a defined 
relationship with less" +

" than two groups.", "Defined 
Relationship Error",

JOptionPane.ERROR_MESSAGE);
blnGroupCreated = false;

return;
}

// Determine the number of elements in each generator
String elementString;
for (int n=0; n<defRelNumOfGenerators; n++)

{
elementString = JOptionPane.showInputDialog(null,

"Enter the number of 
elements in generator " + n,

"Element Query Dialog",
 

JOptionPane.QUESTION_MESSAGE);

// Ensure element string is an integer
try 

{
int temp = Integer.parseInt(elementString, 10);

if (temp < 1) 
{



75

JOptionPane.showMessageDialog(null, 
 "The order of a generator must 

be greater than 0!",
 "Number Error", 

JOptionPane.ERROR_MESSAGE);
n = n-1;
continue;
 

 }
}

catch (NumberFormatException e)
{
JOptionPane.showMessageDialog(null, 

elementString + " is not a legal 
integer!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
n = n-1;
continue;

}
 

generatorList.add(elementString);
definedRelationships.add(new groupRelation(n, 

Integer.parseInt(elementString,10)));
}

boolean extraRelation = true;
while (extraRelation)

{
String question = JOptionPane.showInputDialog(null,

"Do you have an extra 
relationship between generators?\n"

+ "  Enter yes/no. ",
"Relationship Dialog",
 

JOptionPane.QUESTION_MESSAGE);
question = question.toLowerCase();
if (question.compareTo("yes") == 0 || question.compareTo("y") 

== 0)
{
String relationship = JOptionPane.showInputDialog(null,

"Enter the extra 
relationship.",

"Relationship 
Dialog",

 
JOptionPane.QUESTION_MESSAGE);

groupRelation extra = new groupRelation(relationship, 
generatorList);

boolean foundMatch = false;
for (int i=0; i<definedRelationships.size(); i++)

{
groupRelation tempRel = (groupRelation) 

definedRelationships.get(i);
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if (extra.getLeft().compareTo(tempRel.getLeft()) 
== 0)

{
definedRelationships.set(i, extra);
foundMatch = true;

}
}

if (!foundMatch) definedRelationships.add(extra);
}

else
extraRelation = false;

}

for (int i=0; i<defRelNumOfGenerators-1; i++)
{
for (int j=i+1; j<defRelNumOfGenerators; j++)

{
definedRelationships.add(new groupRelation(j, i, 

getNextRelationship(i,j), generatorList));
}

}

System.out.println("Relationships Defined");
for (int j=0; j<definedRelationships.size(); j++)

{
groupRelation temp = (groupRelation) 

definedRelationships.get(j);
System.out.println(j + ": " + temp.getLeft() + " = " + 

temp.getRight());
}

System.out.println("Relationships Defined twice");
if (myCreator.createDefineRelationGroup(generatorList, 

definedRelationships))
{
myGroup.updateTable(myCreator.getGroup(), false);
System.out.println("Attempting to identify group");
findGroupName(evt);

lblResultsOfAnalysis.setEnabled(false);
lblResultsOfAnalysis.setText("");

blnGroupCreated = true;
}

else
{
lblResultsOfAnalysis.setBackground(Color.white);
lblResultsOfAnalysis.setForeground(Color.RED);

lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setText("Error:  No Defined Relationship 

Group Found");
System.out.println("No Defined Relationship Group Found");

blnGroupCreated = false;
}

 
}//GEN-LAST:event_createDefinedRelationshipGroup
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/**
* Method to allow user to enter group of defined order calls
* the <CODE>groupCreator</CODE> object functionality to create and 

store the group.
* @param evt Launched by the push of 

<CODE>btnUserDefinedGroup</CODE>.
*/

 private void createUserEntryGroup(java.awt.event.ActionEvent evt) 
{//GEN-FIRST:event_createUserEntryGroup

String orderString = JOptionPane.showInputDialog(null,
"Enter the size of the group 

you would like to create.",
"User Group Dialog",
JOptionPane.QUESTION_MESSAGE);

int order = 0;
try 

{
order = Integer.parseInt(orderString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

orderString + " is not a legal 
integer!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
return;

}
if (order > 1)

{
if (!myCreator.createEmptyGroup(order))

{
JOptionPane.showMessageDialog(null,

"Error generating an empty group 
of order " + 

orderString + ".\nNO GROUP WAS 
GENERATED",

"Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

}
myGroup.updateTable(myCreator.getGroup(), true);
lblResultsOfAnalysis.setText("");

}
else

{
JOptionPane.showMessageDialog(null, 

"The group order must be an integer 
greater than 1.",

"Number Error", 
JOptionPane.ERROR_MESSAGE);

return;
}

lblGroupName.setText("Group Table:  User Defined");
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lblResultsOfAnalysis.setEnabled(false);
lblResultsOfAnalysis.setText("");

}//GEN-LAST:event_createUserEntryGroup

/**
* Method to create the groups based upon a cross product of at 
* least two other groups calls the <CODE>groupCreator</CODE> object 
* functionality to create and store the group.
* 
*  The group is named by <CODE>groupNamer</CODE> 

<CODE>groupIdentify</CODE> object after creation.
* @param evt Launched by the push of <CODE>btnXProdGroup</CODE>.
*/
private void createXProdGroup(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_createXProdGroup
cayleytable.groupMatrix myGroup1 = new cayleytable.groupMatrix(0);
cayleytable.groupMatrix myGroup2 = new cayleytable.groupMatrix(0);

String XProdName = "Group Table:  ";
String XProdString = JOptionPane.showInputDialog(null,

"Enter the number of groups in 
the cross product. ",

"Cross Product Dialog",
JOptionPane.QUESTION_MESSAGE);

int XProdNumOfGroups = -1;
try 

{
XProdNumOfGroups = Integer.parseInt(XProdString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

XProdString + " is not a legal 
integer!" +

"\nError: " + e.getMessage(),
"Number Error", 

JOptionPane.ERROR_MESSAGE);
return;

}

if (XProdNumOfGroups <= 1)
{
JOptionPane.showMessageDialog(null,

"You cannot create a cross product 
with less" +

" than two groups.", "Cross Product 
Error",

 JOptionPane.ERROR_MESSAGE);
return;

}

String choice = JOptionPane.showInputDialog(null,
"Enter 1 if first group is a 

Cyclic group, else enter 2 for a Defined Relationship. ",
"Cross Product Choice Dialog",
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JOptionPane.QUESTION_MESSAGE);
if (choice.equals("1"))

{
if (createNextCyclicGroup())

XProdNumOfGroups = XProdNumOfGroups - 1;
else

return;
}

else if (choice.equals("2"))
{

createDefinedRelationshipGroup(evt);
if (blnGroupCreated)

XProdNumOfGroups = XProdNumOfGroups - 1;
else

return;
}

else
{
JOptionPane.showMessageDialog(null,

"You must select either a Cyclic group 
or defined relationship",

 "Cross Product Error",
JOptionPane.ERROR_MESSAGE);

return;
}

while (XProdNumOfGroups > 0)
{
myGroup1.resetGroup(myCreator.getGroup());

choice = JOptionPane.showInputDialog(null,
"Enter 1 if next group is a 

Cyclic group, else enter 2 for a Defined Relationship. ",
"Cross Product Choice Dialog",
JOptionPane.QUESTION_MESSAGE);

if (choice.equals("1"))
{
if (createNextCyclicGroup())

myGroup2.resetGroup(myCreator.getGroup());
 else 

return;
}

else if (choice.equals("2"))
{

createDefinedRelationshipGroup(evt);
if (blnGroupCreated)

myGroup2.resetGroup(myCreator.getGroup());
else

return;
}

else
{
JOptionPane.showMessageDialog(null,

"You must select either a Cyclic 
group or defined relationship",
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"Cross Product Error",
JOptionPane.ERROR_MESSAGE);

return;
}

if (!myCreator.createXProdGroup(myGroup1, myGroup2))
{
JOptionPane.showMessageDialog(null,

"Error generating a Cross 
Product" +

" Group.\nNO GROUP WAS 
GENERATED",

"Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

return;
}

XProdNumOfGroups = XProdNumOfGroups - 1;
}

myGroup.updateTable(myCreator.getGroup(), false);
findGroupName(evt);
blnGroupCreated = true;
lblResultsOfAnalysis.setEnabled(false);

lblResultsOfAnalysis.setText("");
}//GEN-LAST:event_createXProdGroup

/**
* Method to create a cyclic group of a user defined size calls the 
* <CODE>groupCreator</CODE> object functionality to create and store 

the group.
* 
* The group is named by <CODE>groupNamer</CODE> 

<CODE>groupIdentify</CODE> object after creation.
* @param evt Launched by the push of <CODE>btnZnGroup</CODE>.
*/
private void createZnGroup(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_createZnGroup
if (createNextCyclicGroup())

{
myGroup.updateTable(myCreator.getGroup(), false);
findGroupName(evt);

blnGroupCreated = true;
}

lblResultsOfAnalysis.setEnabled(false);
lblResultsOfAnalysis.setText("");

}//GEN-LAST:event_createZnGroup

/**
* Method to call functionality in <CODE>groupCreator</CODE> to create 

the 
* inner automorphism of the current group currently stored in 

<CODE>myCreator</CODE>
* <CODE>groupMatrix</CODE> object.
* 
* The group replaces what is stored in <CODE>myGroup</CODE> 

<CODE>groupCreator</CODE> object 
* and named by <CODE>groupIdentify</CODE> after creation.
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* @param evt Launched by the push of <CODE>btnInnerAut</CODE>.
*/
private void createInnerAutGroup(java.awt.event.ActionEvent evt) 

{//GEN-FIRST:event_createInnerAutGroup
if (!myCreator.resetGroup(myGroup.getGroup())

|| !myCreator.getGroup().checkForIdentity()
|| !myCreator.getGroup().checkForInverse()
|| !myCreator.getGroup().checkIfAssociative())
{
JOptionPane.showMessageDialog(null,

"Error generating an Inner 
Automorphism" +

" Group.\nRequires Initial Legal 
Group",

"Illegal Group Error", 
JOptionPane.ERROR_MESSAGE);

return;
}

if (myCreator.createInnerAutGroup())
{
myGroup.updateTable(myCreator.getGroup(), false);
findGroupName(evt);
lblResultsOfAnalysis.setBackground(Color.white);
lblResultsOfAnalysis.setForeground(Color.BLUE);

lblResultsOfAnalysis.setEnabled(true);
if (groupNamer.isIdentified())

lblResultsOfAnalysis.setText("Inner Automorphism 
Found:  " + groupNamer.getName());

else
lblResultsOfAnalysis.setText("Inner Automorphism 

Found:  Unknown Group Name");
System.out.println("Inner Automorphism Group Found");

}
else

{
lblResultsOfAnalysis.setBackground(Color.white);
lblResultsOfAnalysis.setForeground(Color.RED);
lblResultsOfAnalysis.setEnabled(true);

lblResultsOfAnalysis.setText("Error:  No Inner 
Automorphism Group Found");

System.out.println("No Inner Automorphism Group Found");
}

 
}//GEN-LAST:event_createInnerAutGroup

/**
*  Method to name the group stored in <CODE>myCreator</CODE> 

<CODE>groupCreator</CODE> object with the 
* <CODE>groupNamer</CODE> <CODE>groupIdentify</CODE> object and 

displays the results on
* <CODE>lblGroupName</CODE> JLabel object.
* @param evt Launched by the push of <CODE>btnCheckName</CODE>.
*/
private void findGroupName(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_findGroupName
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lblResultsOfAnalysis.setEnabled(true);
lblGroupName.setEnabled(false);
lblResultsOfAnalysis.setBackground(Color.yellow);

lblResultsOfAnalysis.setForeground(Color.red);
if (!myCreator.resetGroup(myGroup.getGroup()))

lblGroupName.setText("Group Table: This is not a Group");
else if (!myCreator.getGroup().checkForIdentity())

lblGroupName.setText("Group Table: This is not a Group");
else if (!myCreator.getGroup().checkForInverse())

lblGroupName.setText("Group Table: This is not a Group");
else if (!myCreator.getGroup().checkIfAssociative())

lblGroupName.setText("Group Table: This is not a Group");
else

{
lblResultsOfAnalysis.setEnabled(false);

groupNamer.resetGroupIdentify(myCreator.getGroup());
lblGroupName.setEnabled(true);

lblGroupName.setText("Group Table: " + groupNamer.getName());
}

}//GEN-LAST:event_findGroupName

/**
* Method to determine if the table stored in the 

<CODE>myCreator</CODE> <CODE>groupCreator</CODE> 
* object is an Abelian group using the analysis functions that are a 

part of <CODE>groupMatrix</CODE>
* and displays the results on <CODE>lblResultsOfAnalysis</CODE> 

JLabel object.
* @param evt Launched by the push of <CODE>btnCheckAbel</CODE>.
*/
private void checkIfAbelian(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_checkIfAbelian
lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setBackground(Color.YELLOW);
lblResultsOfAnalysis.setForeground(Color.RED);
 
if (!myCreator.resetGroup(myGroup.getGroup()))

lblResultsOfAnalysis.setText("The table is not a group because 
there currently is no table to check!");

else if (!myCreator.getGroup().checkForIdentity())
lblResultsOfAnalysis.setText("The table is not a group because 

it does not have an identity element");
else if (!myCreator.getGroup().checkForInverse())

lblResultsOfAnalysis.setText("The table is not a group because 
it does not have an inverse for each element");

else if (!myCreator.getGroup().checkIfAssociative())
lblResultsOfAnalysis.setText("The table is not a group because 

it is not associative");
else if (!myCreator.getGroup().checkIfCommutative())

lblResultsOfAnalysis.setText("The table is not an Abeliain 
Group because it is not communative");

else
{

lblResultsOfAnalysis.setForeground(Color.BLUE);
lblResultsOfAnalysis.setText("The table is an Abelian 

Group.");
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}
 

}//GEN-LAST:event_checkIfAbelian

/**
* Method to determine if the table stored in the 

<CODE>myCreator</CODE> <CODE>groupCreator</CODE> 
* object is a group using the analysis functions that are a part of 

<CODE>groupMatrix</CODE>
* and displays the results on <CODE>lblResultsOfAnalysis</CODE> 

JLabel object.
* @param evt Launched by the push of <CODE>btnCheckGroup</CODE>.
*/
private void checkIfGroup(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_checkIfGroup
lblResultsOfAnalysis.setEnabled(true);
lblResultsOfAnalysis.setBackground(Color.yellow);
lblResultsOfAnalysis.setForeground(Color.red);
 
if (!myCreator.resetGroup(myGroup.getGroup()))

lblResultsOfAnalysis.setText("The table is not a group because 
there currently is no table to check!");

else if (!myCreator.getGroup().checkForIdentity())
lblResultsOfAnalysis.setText("The table is not a group because 

it does not have an identity element");
else if (!myCreator.getGroup().checkForInverse())

lblResultsOfAnalysis.setText("The table is not a group because 
it does not have an inverse for each element");

else if (!myCreator.getGroup().checkIfAssociative())
lblResultsOfAnalysis.setText("The table is not a group because 

it is not associative");
else
{

lblResultsOfAnalysis.setForeground(Color.blue);
lblResultsOfAnalysis.setText("The table is a group.");

}
}//GEN-LAST:event_checkIfGroup
 
 
// Variables declaration - do not modify//GEN-BEGIN:variables
/**
* JButton object to launch <CODE>checkIfAbel</CODE> method.
*/
private javax.swing.JButton btnCheckAbel;
/**
* JButton object to launch <CODE>checkIfGroup</CODE> method.
*/
private javax.swing.JButton btnCheckGroup;
/**
* JButton object to launch <CODE>findGroupName</CODE> method.
*/
private javax.swing.JButton btnCheckName;
/**
* JButton object to launch 

<CODE>createDefinedRelationshipGroup</CODE> method.
*/
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private javax.swing.JButton btnDefRelnGroup;
/**
* JButton object to launch <CODE>createInnerAutGroup</CODE> method.
 */
private javax.swing.JButton btnInnerAut;
 /**
* JButton object to launch <CODE>createUserEntryGroup</CODE> method.
*/
private javax.swing.JButton btnUserDefinedGroup;
/**
* JButton object to launch <CODE>createXProdGroup</CODE> method.
*/
private javax.swing.JButton btnXProdGroup;
/**
* JButton object to launch <CODE>createZnGroup</CODE> method.
*/
private javax.swing.JButton btnZnGroup;
/**
* <CODE>groupIdentify</CODE> object called to determine the name of 

the current
* group that is stored in <CODE>myCreator</CODE> 

<CODE>groupCreator</CODE> object and displayed
 * in <CODE>myGroup</CODE> <CODE>groupPanel</CODE> object.
 */
private cayleytable.groupIdentify groupNamer;
/**
* JLabel that describes functionality of 

<CODE>btnDefRelnGroup</CODE>, 
 * <CODE>btnUserDefinedGroup</CODE>, <CODE>btnXProdGroup</CODE>, and 

<CODE>btnZnGroup</CODE>.
 */
private javax.swing.JLabel lblGeneratorButtons;
/**
* JLabel used to display results of <CODE>findGroupName</CODE> method 

with the current
* name of the group displayed in <CODE>myGroup</CODE> 

<CODE>groupPanel</CODE> object.
*/

 private javax.swing.JLabel lblGroupName;
/**
* JLabel that describes functionality of <CODE>btnCheckGroup</CODE>, 
* <CODE>btnCheckAbel</CODE>, <CODE>btnCheckName</CODE>, and 

<CODE>btnInnerAut</CODE>.
*/
private javax.swing.JLabel lblPropertyButtons;
/**
* JLabel used to display results of <CODE>checkGroup</CODE>, 

<CODE>checkAbel</CODE> 
* and <CODE>createInnerAutGroup</CODE> methods with respect to the 

current
* group displayed in <CODE>myGroup</CODE> <CODE>groupPanel</CODE> 

object.
*/
private javax.swing.JLabel lblResultsOfAnalysis;
/**



85

* groupCreator object used to create and store group via the 
<CODE>createDefinedRelationshipGroup</CODE>, 

* <CODE>createUserEntryGroup</CODE>, <CODE>createXProdGroup</CODE>, 
<CODE>createZnGroup</CODE>, and <CODE>createInnerAutGroup</CODE> methods.

* 
* Also, stores group that is analyzed via the 

<CODE>checkIfGroup</CODE> and <CODE>checkIfAbelian</CODE> methods.
* 
* This is the group that is also sent to the <CODE>myGroup</CODE> 

<CODE>groupPanel</CODE> object and
* the <CODE>groupNamer</CODE> <CODE>groupIdentify</CODE> object for 

use in displaying the Cayley Table
* and finding the name of the group via the 

<CODE>findGroupName</CODE> method.
*/
private cayleytable.groupCreator myCreator;
/**
* <CODE>groupPanel</CODE> object used for displaying the Cayley Table 

that it
* is passed via a <CODE>groupMatrix</CODE> object.
*/
private cayleytable.groupPanel myGroup;
// End of variables declaration//GEN-END:variables
/**
* Boolean variable used by 

<CODE>createDefinedRelationshipGroup</CODE>, 
* <CODE>createXProdGroup</CODE>, and <CODE>createZnGroup</CODE> 

methods to identify if
* a new group was successfully created.
*/
private boolean blnGroupCreated;
 

/**
* Method used to request the "pseudo" commutative defined 

relationships
* from the user for use in the 

<CODE>createDefinedRelationshipGroup</CODE> method.
* @param a Value representing one subgroup in relationship ba=?? 

where ?? is the new relationship.
* @param b Value representing second subgroup in relationship 

ba=?? where ?? is the new relationship.
* @return String object containing the right hand side of the 

"pseudo" commutative relationship
*/
private String getNextRelationship(int a, int b)

{
String relationship = JOptionPane.showInputDialog(null,

"Enter the relationship for " + 
(char)((char)b+97) + (char)((char)a+97) +

"\na represents group 1, b represents 
group 2, etc." +

"\nA is the inverse of a, B is the 
inverse of b, etc.",

"Relationship Dialog",
JOptionPane.QUESTION_MESSAGE);
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int length = relationship.length();

if (length < 2) return relationship;

for (int i=0; i<length-1; i++)
{
for (int j=i+1; j<length; j++)

{
if ((int) relationship.toLowerCase().charAt(i) > (int) 

relationship.toLowerCase().charAt(j))
{
JOptionPane.showMessageDialog(null,

"Error in relationship 
order.  Must order elements " +

"so that letters are in 
alphabetical order.",

"Relationship Error", 
 

JOptionPane.ERROR_MESSAGE);
return null;

}
}

}

return relationship;
}

 
/**
* Method used to create the actual cyclic group that is used by
* the <CODE>createZnGroup</CODE> and <CODE>createXProdGroup</CODE> 

methods.
* @return Result identifying if a new Cyclic group was successfully 

created.
*/
private boolean createNextCyclicGroup()
{

String ZnOrderString = JOptionPane.showInputDialog(null,
"Enter the order for the Cyclic 

Group. ",
"Cyclic Group Dialog",
JOptionPane.QUESTION_MESSAGE);

int ZnOrder = -1;

try 
{
ZnOrder = Integer.parseInt(ZnOrderString, 10);

}
catch (NumberFormatException e)

{
JOptionPane.showMessageDialog(null, 

ZnOrderString + " is not a legal 
integer!" +

"\nError: " + e.getMessage(),
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"Number Error", 
JOptionPane.ERROR_MESSAGE);

return false;
}

if (ZnOrder > 0)
{
if (!myCreator.createCyclicGroup(ZnOrder))

{
JOptionPane.showMessageDialog(null,

"Error generating a Z" + 
ZnOrderString +

" Group.\nNO GROUP WAS 
GENERATED",

"Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

return false;
}

lblResultsOfAnalysis.setText("");
return true;

}
JOptionPane.showMessageDialog(null,

ZnOrderString + " is not a legal integer!\n" 
+

" Order of a group must be greater than 0",
"Group Generation Error", 
JOptionPane.ERROR_MESSAGE);

return false;
}

/**
* Method to calculate the factorial of an integer
* @param n Integer for which the factorial is calculated
* @return Factorial of n
*/
private int factorial(int n)
{
if (n <= 0) return 1;
else return n * factorial(n-1);

}

}

GROUPPANEL.JAVA
/*
* groupPanel.java
*
* Created on January 16, 2005, 1:20 PM
*/

package cayleytable;

import javax.swing.table.*;
import java.awt.*;
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/**
* Extended JPanel object that is used to display the actual Cayley
* Table stored in the <CODE>myGroup</CODE> <CODE>groupMatrix</CODE> 
object and displayed as 
* via the <CODE>tblGroupTable</CODE> JTable object using the 
<CODE>gtmGroupModel</CODE>
* <CODE>groupTableModel</CODE> object as the format for viewing.
*
* @author Jeffrey Barr
*/
public class groupPanel extends javax.swing.JPanel {

 
/**
* Creates new extended JPanel <CODE>groupPanel</CODE>
*/
public groupPanel() {

initComponents();
}
 
/**
* This method is called from within the constructor to
* initialize groupPanel.  
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
* This code is autogenerated by the Netbeans code.
*/
private void initComponents() {//GEN-BEGIN:initComponents

myGroup = new cayleytable.groupMatrix();
spnGroupTable = new javax.swing.JScrollPane();
tblGroupTable = new javax.swing.JTable();

setLayout(new java.awt.BorderLayout());

setAutoscrolls(true);
tblGroupTable.setFont(new java.awt.Font("Microsoft Sans Serif", 0, 

12));
gtmGroupModel = new cayleytable.groupTableModel(this);
tblGroupTable.setModel(gtmGroupModel);
 

tblGroupTable.setAutoResizeMode(javax.swing.JTable.AUTO_RESIZE_OFF);
tblGroupTable.setAutoscrolls(false);
tblGroupTable.setRowSelectionAllowed(false);
spnGroupTable.setViewportView(tblGroupTable);
tblGroupTable.getAccessibleContext().setAccessibleParent(this);

add(spnGroupTable, java.awt.BorderLayout.CENTER);

}//GEN-END:initComponents
 
 
// Variables declaration - do not modify//GEN-BEGIN:variables
/**
* <CODE>groupMatrix</CODE> object used to store the actual Cayley 

Table being displayed
* on the panel via the <CODE>tblGroupTable</CODE> JTable object.
*/
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private cayleytable.groupMatrix myGroup;
/**
* JScrollPane object used to extend the size of usable space 

available
* for the <CODE>tblGroupTable</CODE> JTable object being displayed on 

the user
* interface so that groups of higher order can be displayed.
*/
private javax.swing.JScrollPane spnGroupTable;
/**
* JTable object used to display the actual Cayley Table stored in 

<CODE>myGroup</CODE>
* <CODE>groupMatrix</CODE> object.  Formatting of the table is done 

via the <CODE>gtmGroupModel</CODE>.
*/
private javax.swing.JTable tblGroupTable;
// End of variables declaration//GEN-END:variables
/**
* AbstractTableModel object used to describe how the group stored in 
 * <CODE>myGroup</CODE> <CODE>groupMatrix</CODE> object is displayed 

using the <CODE>tblGroupTable</CODE> <CODE>JTable</CODE>
 * object.
*/
private cayleytable.groupTableModel gtmGroupModel;
 
/**
* Method to update both the <CODE>tblGroupTable</CODE> JTable object 

and the
* <CODE>myGroup</CODE> <CODE>groupMatrix</CODE> object with a new 

group that is passed in.
* @param newTable New <CODE>groupMatrix</CODE> object used to update 

objects in <CODE>groupPanel</CODE>
* @param makeEditable Boolean variable used to determine if 

individual cells in the table can be changed manually through the user 
interface.

*/
public void updateTable(groupMatrix newTable, boolean makeEditable) {

myGroup.resetGroup(newTable);
gtmGroupModel.displayTable(newTable, makeEditable);
DefaultTableCellRenderer renderer = new 

DefaultTableCellRenderer();
renderer.setBackground(Color.BLACK);
renderer.setForeground(Color.YELLOW);

 renderer.setFont(new Font("SansSerif", Font.PLAIN, 12));
 

tblGroupTable.getColumnModel().getColumn(0).setCellRenderer(renderer);
tblGroupTable.getTableHeader().setBackground(Color.BLACK);
tblGroupTable.getTableHeader().setForeground(Color.YELLOW);

}
 
/**
* Method used by the user interface to update values in 

<CODE>myGroup</CODE> <CODE>groupMatrix</CODE>
* object when individual cells in the <CODE>tblGroupTable</CODE> 

JTable object are edited by the user.
 * @param row Current row in Cayley Table that is to be changed.



90

* @param col Current column in Cayley Table that is to be changed.
* @param value New value to change in the Cayley Table.
*/
public void changeValueInGroup(int row, int col, int value) {

myGroup.setEntry(row, col, value);
}
 
/**
* Returns the <CODE>myGroup</CODE> <CODE>groupMatrix</CODE> object 

that is 
* stored and displayed in <CODE>groupPanel</CODE>.
* @return Current <CODE>myGroup</CODE> <CODE>groupMatrix</CODE> 

object that is displayed in <CODE>groupPanel</CODE>.
*/
public groupMatrix getGroup() {

return myGroup;
}

}

GROUPTABLEMODEL.JAVA
/*
* groupTableModel.java
*
* Created on January 16, 2005, 2:04 PM
*/

package cayleytable;

import javax.swing.table.AbstractTableModel;
import javax.swing.*;
import java.lang.Integer;
import java.util.*;
/**
* Extended AbstractTableModel class describing how a group stored in
* a <CODE>groupMatrix</CODE> object is displayed in a JTable object.
* @author Jeffrey Barr
*/
public class groupTableModel extends AbstractTableModel {

/**
* int that contains the current order of the group on display
*/
private int order;
/**
* boolean that determines if the JTable can be manually edited
*/
private boolean canEditTable;
/**
* ArrayList of ArrayList of String objects which contains every cell
* in the JTable which is the <CODE>groupMatrix</CODE> object passed 

to the <CODE>groupTableModel</CODE>
* constructor.
*/
private ArrayList<ArrayList<String>> tableRows;
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/**
* <CODE>groupPanel</CODE> object that contains the JTable that the 

current
* instanced of <CODE>groupTableModel</CODE> defines.
*/
private cayleytable.groupPanel topPanel;
 
/**
* Creates a new instance of groupTableModel with an empty group of 

order 0
* @param inputPanel groupPanel object which contains the JTable 

object
*/
public groupTableModel(groupPanel inputPanel)
{
order = 0;
canEditTable = false;
tableRows = new ArrayList<ArrayList<String>>();
topPanel = inputPanel;

}

/**
* Method that fills the column headers and cells in the JTable with 

the
 * newest <CODE>groupMatrix</CODE> object.
 * @param matrix <CODE>groupMatrix</CODE> object that contains the 

newest group to be displayed.
* @param makeEditable Boolean variable that defines if the newest 

group can be manually edited in the JTable
*/
public void displayTable(groupMatrix matrix, boolean makeEditable)
{
order = matrix.getOrder();
canEditTable = makeEditable;
tableRows.clear();
tableRows = new ArrayList<ArrayList<String>>(order);

for (int row=0; row<order; row++)
{
ArrayList<String> tableCols = new ArrayList<String>(order+1);
while (tableCols.size() < order+1) 

tableCols.add(Integer.toString(-1));
for (int col=0; col<order+1; col++) 

{
if (col == 0) tableCols.set(col, Integer.toString(row));
else tableCols.set(col, Integer.toString( 

matrix.getEntry(row, col-1)));
}

tableRows.add(row, tableCols);
}

fireTableChanged(null);
}

/**
* Method used to return value to display as column name 
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* for a specific column in the JTable.
* @param column int value of column name to retrieve
* @return Name of column based upon position 
*/
public String getColumnName(int column)
{
if (column == 0) return (null);
return Integer.toString(column-1);

}

/**
* Method to return number of rows in the JTable.
* @return int value containing the order of the group being 

displayed.
*/
public int getRowCount()
{
return order;

}

/**
* Method to return number of columns in the JTable.
* @return int value containing the order of the group + one for each 

element in the group and the first column containing the element names.
*/
public int getColumnCount()
{
return (order+1);

}

/**
* Method to set the value of a cell in the JTable as well as resets 
* the value of the same cell in the group stored in 

<CODE>topPanel</CODE>.
* @param aValue Object that is the new value of the cell in the 

table.
* @param rowIndex integer containing row of the cell to change in the 

JTable
 * @param columnIndex integer containing column of the cell to change 

in the JTable
*/
public void setValueAt(Object aValue, int rowIndex, int columnIndex)
{
try 

{
int value = Integer.decode((String) aValue).intValue();
if (value < 0 || value >= order)

return;
else

topPanel.changeValueInGroup(rowIndex, columnIndex-1, 
value);

}
catch (NumberFormatException e) 

{
return;

}
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ArrayList<String> tableCols;
tableCols = tableRows.get(rowIndex);
tableCols.set(columnIndex, (String) aValue);

tableRows.set(rowIndex, tableCols);
 
// Notify table that new data is available for a specific cell
// Table is then refreshed with this new data.
fireTableCellUpdated(rowIndex, columnIndex);

}

/**
* Method used to return value to display for a specific row, column 

in the JTable.
* @param rowIndex integer containing row of cell in JTable to 

retrieve.
* @param columnIndex integer containing column of cell in JTable to 

retrieve.
* @return Value of cell in JTable that was retrieved
*/
public Object getValueAt(int rowIndex, int columnIndex)
{
ArrayList tableCols = (ArrayList) tableRows.get(rowIndex);

if (tableCols.get(columnIndex) == "-1") return "";
return tableCols.get(columnIndex);

}

/**
* Method to determine if a specific cell is editable on the JTable.
* @param rowIndex integer containing row of cell in JTable to check.
* @param columnIndex integer containing column of cell in JTable to 

check.
* @return Boolean that determines if cell is editable
*/
public boolean isCellEditable(int rowIndex, int columnIndex)
{
if (canEditTable)

return (columnIndex != 0);

return false;
}

}

GROUPRELATION.JAVA
/*
* groupRelation.java
*
* Created on January 17, 2005, 3:29 PM
*/



94

package cayleytable;

import java.util.*;
import java.io.*;
/**
* Class used to store the relationships between generators of groups
* being created in the 
<CODE>groupCreator.createDefineRelationGroup</CODE> method.
* @author Jeffrey Barr
*/
public class groupRelation {

 
/**
* String Object that stores the LHS of the relationship equation
*/
String left;
/**
* String Object that stores the RHS of the relationship equation
*/
String right;

/**
* Creates a new instance of <CODE>groupRelation</CODE> containing a 

generator
* raised to some power being equal to the identity element or an
* empty RHS.
* @param generator Generator for which the <CODE>groupRelation</CODE> 

is being created
* @param genSize Order of generator for which <CODE>relation</CODE> 

is being generated.
*/
public groupRelation(int generator, int genSize)
{
left = new String("");
right = new String("");

for (int i=0; i<genSize; i++)
{
left = left + Integer.toString(generator, 10);

}

}

/**
* Creates a new instance of <CODE>groupRelation</CODE> containing a 
* relationship defined completely by the user through the user 

interface.
* @param relationship String object that represents the relationship 

being created.
* @param generatorList ArrayList of String objects that are the order 

of each of the generators of the group for use in determining the inverse 
of a generator.

*/
public groupRelation(String relationship, ArrayList generatorList)
{
left = new String("");
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right = new String("");
boolean onLeft = true;

char[] relChars = relationship.toCharArray();
for (int i=0; i<relationship.length(); i++)

{
int position;
if (relChars[i] == '=') onLeft = false;
else if (relChars[i] == ' ') continue;
else if ((int) relChars[i] >= (int)'a' && (int) relChars[i] <= 

(int)'z') 
{
position = relChars[i] - (int)'a';
if (onLeft)

left = left + Integer.toString(position, 10);
else

right = right + Integer.toString(position, 10);
}

else
{
position = relChars[i] - (int)'A';
int size = Integer.parseInt((String) 

generatorList.get(position));
for (int j=0; j < size-1; j++)

{
if (onLeft)

left = left + Integer.toString(position, 10);
else

right = right + Integer.toString(position, 
10);

}
}

}

}

/**
* Creates a new instance of <CODE>groupRelation</CODE> containing
* a "pseudo" commutative defined relationship of the group.
* @param gen1 Integer representing the first generator in the 

"pseudo" commutative defined relationship
* @param gen2 Integer representing the second generator in the 

"pseudo" commutative defined relationship
* @param rgt String object containing the RHS of the "pseudo" 

commutative defined relationship
* @param generatorList ArrayList of String objects that are the order 

of each of the generators of the group for use in determining the inverse 
of a generator.

*/
public groupRelation(int gen1, int gen2, String rgt, ArrayList 

generatorList)
{
left = new String("");
right = new String("");

left = left + Integer.toString(gen1, 10);
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left = left + Integer.toString(gen2, 10);

char[] rightChars = rgt.toCharArray();
for (int i=0; i<rgt.length(); i++)

{
int position;
if ((int) rightChars[i] >= (int)'a' && (int) rightChars[i] <= 

(int)'z') 
{
position = rightChars[i] - (int)'a';
right = right + Integer.toString(position, 10);

}
else

{
position = rightChars[i] - (int)'A';
int size = Integer.parseInt((String) 

generatorList.get(position));
for (int j=0; j < size-1; j++)

{
right = right + Integer.toString(position, 10);

}
}

}
}

/**
* Returns LHS of the <CODE>groupRelation</CODE>.
* @return String object containing LHS of relation equation.
*/
public String getLeft()
{
return left;

}

/**
* Returns RHS of the <CODE>groupRelation</CODE>.
* @return String object containing RHS of relation equation.
*/
public String getRight()
{
return right;

}

}

GROUPMATRIX.JAVA
/*
* groupMatrix.java
*
* Created on January 16, 2005, 8:07 PM
*/
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package cayleytable;

import java.util.*;
/**
* Class used as a storage device for all groups.  Stores the Cayley
* table as an ArrayList of ArrayList of Strings where each row in
* the table is one of the ArrayList of Strings and each cell is 
represented
* by one String.  The class also has analysis functions to determine
* if the Cayley Table has group characteristics such as an Identity
* element, inverse for each element, and associativity.
* @author Jeffrey Barr
*/
public class groupMatrix {

 
/**
* ArrayList of ArrayList of Strings used for storing the Cayley Table
* where each row in the table is one of the ArrayList of Strings and
* each cell is represented by one String.
*/
private ArrayList<ArrayList<String>> matrixRows;
/**
* Order of the group being stored refers to the number of rows and 
* columns in the Cayley Table.
*/
private int order;

/**
* Creates a new instance of groupMatrix with an empty Cayley Table 
* (order 0).
*/
public groupMatrix() {

matrixRows = new ArrayList<ArrayList<String>>();
order = 0;

for (int row=0; row < order; row++)
{
ArrayList<String> matrixCols = new ArrayList<String>();
for (int col=0; col < order; col++)

matrixCols.add("-1");
matrixRows.add(matrixCols);

}
}

/**
* Creates a new instance of groupMatrix with a Cayley Table of a 
* specific given order.
* @param n Order of group to create.
*/
public groupMatrix(int n) {

matrixRows = new ArrayList<ArrayList<String>>();
order = n;
for (int row=0; row < order; row++)

{
ArrayList<String> matrixCols = new ArrayList<String>();
for (int col=0; col < order; col++)

matrixCols.add("-1");
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matrixRows.add(matrixCols);
}

}

/**
* Method to update the <CODE>matrixRows</CODE> and <CODE>order</CODE> 

of 
* the current group with the values from a new 

<CODE>groupMatrix</CODE> object.
* @param reset <CODE>groupMatrix</CODE> object that contains new 

group to update the current group.
*/
public void resetGroup(cayleytable.groupMatrix reset)
{
resetSize(reset.getOrder());
for (int row=0; row < order; row++)

{
for (int col=0; col < order; col++)

{
setEntry(row, col, reset.getEntry(row,col));

}
}

}

/**
* Method to determine if another <CODE>groupMatrix</CODE> object is 

equal to the
* current group stored in this <CODE>groupMatrix</CODE> instance.
* @param check <CODE>groupMatrix</CODE> object to compare to this 

instance.
* @return Boolean value whose result determines if the two groups 

being compared are equal.
*/
public boolean isEqual(cayleytable.groupMatrix check)

 {
if (order != check.getOrder()) return false;
for (int row=0; row < order; row++)

{
for (int col=0; col < order; col++)

{
if (getEntry(row, col) != check.getEntry(row,col))

return false;
}

}
return true;

}

/**
* Method to reset the groupMatrix object to an Cayley Table of a 

given
* order filled  with all -1 values.
* @param size New order of the Cayley Table.
*/
public void resetSize(int size)
{

matrixRows.clear();
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order = size;
for (int row=0; row < order; row++)
{
ArrayList<String> matrixCols = new ArrayList<String>();

try {
for (int col=0; col < order; col++)

matrixCols.add("-1");
 matrixRows.add(matrixCols);
}
catch (IndexOutOfBoundsException e) {

System.out.println("Error Index out of Bounds:  " + 
e.getMessage());

}
}

}

/**
* Method to set the value of a specific cell in the Cayley Table to
* a given value.
* @param row integer containing row of the cell to change in the 

Cayley Table
* @param col integer containing column of the cell to change in the 

Cayley Table
* @param value integer containing new value of the cell stored in the 

Cayley Table
*/
public void setEntry(int row, int col, int value)
{
ArrayList<String> matrixCols = matrixRows.get(row);
matrixCols.set(col, Integer.toString(value));

 matrixRows.set(row, matrixCols);
}
 
/**
* Method to get the value of a specific cell in the Cayley Table.
* @param row integer containing row of the cell to retrieve in the 

Cayley Table
* @param col integer containing column of the cell to retrieve in the 

Cayley Table
* @return integer containing value of the cell retrieved from the 

Cayley Table
*/
public int getEntry(int row, int col)
{
ArrayList<String> matrixCols = matrixRows.get(row);
return Integer.decode((String) matrixCols.get(col)).intValue();

}

/**
* Method to determine if all of the cells in the Cayley Table have a
* value.  Does not determine if the values are legal (0 to order-1).
* @return Boolean with result of the check
*/
public boolean checkComplete()
{
ArrayList<String> matrixCols;
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int temp;
for (int row=0; row < order; row++)

{
for (int col=0; col < order; col++)

{
matrixCols = matrixRows.get(row);
if (matrixCols.get(col) == null) // || 

matrixCols.get(col) == "-1")
return false;

}
}

return true;
}

/**
* Method to return value of <CODE>order</CODE> in this instance of 

<CODE>groupMatrix</CODE>
* @return integer value containing <CODE>order</CODE> of the Cayley 

Table.
*/
public int getOrder()
{
return order;

}
 
/**
* Method to determine the identity element of the group stored in the
* Cayley Table.
* @return integer value of the identity element
*/

 public int findIdentity()
{
if (!checkForIdentity()) return -1;

for (int row=0; row < order; row++)
{
int col = 0;
while (col < order && getEntry(row, col) == col) col++;
if (col >= order)

return row;
}

return -1;
}

 /**
* Method to return inverse of an element in the group
* @param element integer element in group of which to find inverse
* @return integer value of the inverse
*/
public int findInverse(int element)
{
int identity = findIdentity();
for (int row=0; row < order; row++)

{
if (getEntry(row, element) == identity) 
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return row;
}

return order+1;
}
 
 
/**
* Method to determine if the Cayley Table contains an identity 

element
 * @return Boolean result of the check

*/
public boolean checkForIdentity()
{
int columnID = -1;
int rowID = -1;

// Check for the row that is the Identity;
for (int row=0; row < order; row++)

{
// Check if the row returns it's relative column position
int col = 0;
while (col < order && getEntry(row, col) == col) col++;
if (col >= order) 

{
rowID = row;
break;

}
}

// Check if row Identity element was found
if (rowID < 0) return false;

// Find the column in the zeroth row that returns the value of the 
zeroth row position

columnID = 0;
while (columnID < order && getEntry(0, columnID) != 0) 

columnID++;

// If no column in the zeroth row is 0, then there is no identity 
column in the table

if (columnID >= order)
return false;

// Check the column on the remaining rows to ensure it is the 
identity 

for (int row=1; row < order; row++)
{
// If this column continues to return the current row position 

for all rows
// continue, else return that there is no true identity column
if (getEntry(row, columnID) != row) return false;

}

// The identity row and column should be the same
if (rowID == columnID) return true;
else return false;
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}

/**
* Method to determine if all elements in the Cayley Table have an 
* inverse element.
* @return Boolean result of the check
*/
public boolean checkForInverse()
{
int identity = findIdentity();
if (identity == -1) return false;

// Check for the row that is the Identity;
for (int row=0; row < order; row++)

{
int inverse = findInverse(row);
// No inverse found for this row value so return false
if (inverse >= order) 

{
return false;

}
// The inverse should work both ways so ensure it does, else 

return false
else if (getEntry(inverse,row) != identity)

return false;
}

return true;
}

/**
* Method to determine if all operations in the Cayley Table are 
* associative.
* @return Boolean result of the check
*/
public boolean checkIfAssociative()
{
for (int x=0; x<order; x++)

{
for (int y=0; y<order; y++)

{
for (int z=0; z<order; z++)

{
// For associative property check that (x * (y * 

z)) = ((x * y) * z)
if (getEntry(x, getEntry(y,z)) != 

getEntry(getEntry(x,y), z))
return false;

}
}

}
return true;

}

/**
* Method to determine if all operations in the Cayley Table are 
* commutative.
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* @return Boolean result of the check
*/
public boolean checkIfCommutative()
{
for (int x=0; x<order; x++)

{
for (int y=0; y<order; y++)

{
// For communative property check that (x * y)) = (y * 

x)
if (getEntry(x, y) != getEntry(y, x))

return false;
}

}
return true;

}

 
/**
* Method to determine if all rows and columns in the Cayley Table 

have
* unique elements for each cell in the row or column.
* @return Boolean result of the check
*/
public boolean checkForUniquenessInRowAndCol()
{
// Checks that each row never repeats a value within the row
for (int row=0; row<order; row++)

{
// Get the row and place it into an array
int rowArray[] = new int[order];
for (int col=0; col < order; col++)

rowArray[col] = getEntry(row, col);

// Check that the array does not repeat a value
if (!checkArray(rowArray, order)) return false;

}

// Checks that each col never repeats a value within the col
for (int col=0; col<order; col++)

{
// For each column, get the value from each row 
// for that column and place it into an array
int colArray[] = new int[order];
for (int row=0; row<order; row++)

{
colArray[row] = getEntry(row, col);

}

// Check that the array does not repeat a value
if (!checkArray(colArray, order)) return false;

}

return true;
 

}
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/**
* Method to check if a given array has a unique set of elements that 
* never repeat.
* @param values Array of integers that is being checked.
* @param size integer size of array being checked
* @return Boolean result of the check
*/
private boolean checkArray(int[] values, int size)
{
// Sort the array
java.util.Arrays.sort(values);

// Determine if the sorted array repeats any values
for (int i=0; i<size-1; i++)

{
if (values[i] == values[i+1]) return false;

}
return true;

}

}

GROUPCREATOR.JAVA
/*
* groupCreator.java
*
* Created on January 17, 2005, 12:57 PM
*/

package cayleytable;

import java.util.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
/**
* Class used to create and store a <CODE>group</CODE> in 
<CODE>groupMatrix</CODE> object.
* @author Jeffrey Barr
*/
public class groupCreator {

 
/**
* <CODE>groupMatrix</CODE> object that is created and stored by this
* class.
*/
private cayleytable.groupMatrix group;

/**
* Constructor that creates a new instance of 

<CODE>groupCreator</CODE> with an empty
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 * <CODE>group</CODE> <CODE>groupMatrix</CODE> object.
 */
public groupCreator() {

group = new cayleytable.groupMatrix(0);
}

/**
* Constructor that creates a new instance of 

<CODE>groupCreator</CODE> with
* a <CODE>group</CODE> <CODE>groupMatrix</CODE> object of specific 

order.
* @param size Order of empty <CODE>groupMatrix</CODE> object to 

create
*/
public groupCreator(int size)
{
group = new cayleytable.groupMatrix(size);

}

/**
* Returns <CODE>group</CODE> <CODE>groupMatrix</CODE> object created 

by <CODE>groupCreator</CODE>.
* @return Current <CODE>group</CODE> <CODE>groupMatrix</CODE> object 

created and stored in the class.
*/
public cayleytable.groupMatrix getGroup()
{
return group;

}

/**
* Resets the <CODE>group</CODE> <CODE>groupMatrix</CODE> object in 

the class <CODE>groupCreator</CODE>
* with a new <CODE>groupMatrix</CODE> object passed to the method.
* @param newGroup <CODE>groupMatrix</CODE> object that is to replace 

the <CODE>group</CODE> <CODE>groupMatrix</CODE> object.
* @return Boolean value representing success of updating the 

<CODE>group</CODE> <CODE>groupMatrix</CODE> object.
*/
public boolean resetGroup(cayleytable.groupMatrix newGroup)
{
if (group.getOrder() != newGroup.getOrder()) 

group.resetSize(newGroup.getOrder());

for (int row=0; row<group.getOrder(); row++)
{
for (int col=0; col < group.getOrder(); col++)

{
group.setEntry(row, col, newGroup.getEntry(row,col));

}
}

return group.checkComplete();
}

/**



106

* Method to update <CODE>group</CODE> <CODE>groupMatrix</CODE> object 
with a new empty group of

* given order.
* @param size Order of empty <CODE>group</CODE> 

<CODE>groupMatrix</CODE> object to create and store.
* @return Boolean value representing success of updating the 

<CODE>group</CODE> <CODE>groupMatrix</CODE> object.
*/
public boolean createEmptyGroup(int size)
{
int order = group.getOrder();
if (order != size) group.resetSize(size);
return group.checkComplete();

}

/**
* Method to update <CODE>group</CODE> <CODE>groupMatrix</CODE> object 

with a 
* new cyclic group of given order.
* @param size Order of cyclic <CODE>group</CODE> 

<CODE>groupMatrix</CODE> object to create and store.
* @return Boolean value representing success of updating the 

<CODE>group</CODE> <CODE>groupMatrix</CODE> object.
*/
public boolean createCyclicGroup(int size)
{
int order = group.getOrder();
if (order != size) group.resetSize(size);
for (int row=0; row < size; row++)

 {
for (int col=0; col < size; col++)

 {
group.setEntry(row, col, (row+col)%size);

}
}

return group.checkComplete();
}

/**
* Method to update <CODE>group</CODE> <CODE>groupMatrix</CODE> object 

with a 
* new cross product group that is a combination of two groups that 

are passed
* to the method.
* @param g1 First <CODE>groupMatrix</CODE> object passed to the 

method for cross product calculation.
* @param g2 Second  <CODE>groupMatrix</CODE> object passed to the 

method for cross product calculation.
* @return Boolean value representing success of updating the 

<CODE>group</CODE> <CODE>groupMatrix</CODE> object.
*/
public boolean createXProdGroup(cayleytable.groupMatrix g1, 

cayleytable.groupMatrix g2)
{
int x1, x2;              // positions in g1 table
int y1, y2;              // positions in g2 table
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int x,y;                 // results of g1 and g2 tables

int size = g1.getOrder() * g2.getOrder();
if (size != group.getOrder()) group.resetSize(size);

int[][] cross_prod_set = new int[size][2];
int count = 0;
for (int i=0; i < g1.getOrder(); i++)

{
for (int j=0; j < g2.getOrder(); j++)

{
cross_prod_set[count][0] = i;
cross_prod_set[count][1] = j;
count++;

}
}

if (count != size) return false;

for (int row=0; row < size; row++)
 {

for (int col=0; col < size; col++)
 {

x1 = cross_prod_set[row][0];
x2 = cross_prod_set[col][0];
x = g1.getEntry(x1, x2);
y1 = cross_prod_set[row][1];
y2 = cross_prod_set[col][1];
y = g2.getEntry(y1, y2);

boolean found = false;
for (int k=0; k<size && found==false; k++)

{
if (x == cross_prod_set[k][0] && 

y == cross_prod_set[k][1])
{
found = true;
group.setEntry(row, col, k);

}
}

if (found != true)  return false;
}

}

return group.checkComplete();
} 

/**
 * Method to update <CODE>group</CODE> <CODE>groupMatrix</CODE> object 

with a 
* new defined relationship group that is defined by relationships and 

generators
* that are passed to the method.
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* @param generatorList ArrayList of String objects that are the order 
of each of the generators of the group.

* @param relationships ArrayList of <CODE>groupRelation</CODE> 
objects that contain the relationships between the generators.

* @return Boolean value representing success of updating the 
<CODE>group</CODE> <CODE>groupMatrix</CODE> object.

*/
public boolean createDefineRelationGroup(ArrayList<String> 

generatorList, ArrayList<groupRelation> relationships)
{
int size = 1;

for (int i=0; i<generatorList.size(); i++)
{
size *= Integer.parseInt(generatorList.get(i));

}

if (size != group.getOrder()) group.resetSize(size);

ArrayList finalElements = createFinalElementList(generatorList); 
// System.out.println("Final Elements created");

for (int row=0; row<finalElements.size(); row++)
 {

for (int col=0; col < finalElements.size(); col++)
 {

String tempWord = new String((String) 
finalElements.get(row) + (String) finalElements.get(col));

//System.out.println("tempWord = " + tempWord + "\trow = 
" + row + "\tcol = " + col);

boolean stillReducing = true;
while (stillReducing)

{
int k = 0;
boolean substMade = false;
while (k < relationships.size() && (!substMade))

{
groupRelation curRelation = (groupRelation) 

relationships.get(k);
k = k+1;
int loc = 

tempWord.indexOf(curRelation.getLeft());
StringBuffer tempBuffer = new 

StringBuffer(tempWord);
if (loc >= 0)

{
tempBuffer.replace(loc, 

loc+curRelation.getLeft().length(), curRelation.getRight());
tempWord = tempBuffer.toString();
substMade = true;

}
}

if (!substMade) stillReducing = false;
}

int count = 0;
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boolean elementFound = false;
//System.out.println("Reduced tempWord = " + tempWord + 

"\trow = " + row + "\tcol = " + col);
while ((!elementFound) && count < finalElements.size())

{
String tempFinal = (String) 

finalElements.get(count);
if (tempWord.trim().compareTo(tempFinal.trim()) == 

0)
{
group.setEntry(row, col, count);
elementFound = true;

}
if (!elementFound) count = count + 1;

}

if (!elementFound) return false;
}

}
return group.checkComplete();

}

/**
* Method to determine all the elements of a group given the orders of
* a list of generators of the group being created in 

<CODE>createDefineRelationGroup</CODE>
* @param generatorList ArrayList of String objects that are the order 

of each of the generators of the group.
* @return The final list of elements that comprise the group being 

created in <CODE>createDefineRelationGroup</CODE>
*/
private ArrayList createFinalElementList(ArrayList<String> 

generatorList)
{
ArrayList<String> finalElements = new ArrayList<String>();
int size = generatorList.size();
String str = new String("");
int gens[] = new int[size];
ArrayList<ArrayList<String>> elementMatrix = new 

ArrayList<ArrayList<String>>();

for (int i=0; i<size; i++)
{
str = "";
ArrayList<String> elementRow = new ArrayList<String>();
for (int j=0; j < Integer.parseInt(generatorList.get(i)); j++)

{
elementRow.add(str);
str = Integer.toString(i);

}
elementMatrix.add(elementRow);

}

int count = 0;
String lastElement = new String("");
String nextElement = new String("");
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for (int k=0; k < Integer.parseInt(generatorList.get(count)); k++)
{

ArrayList<String> elementRow = elementMatrix.get(count);
nextElement = nextElement + elementRow.get(k);
finalElements = fillList(finalElements, elementMatrix, 

generatorList, nextElement, count+1);
}

// for (int x=0; x < finalElements.size(); x++) 
System.out.println(x + ":\t" + (String)finalElements.get(x));

return finalElements;
}

/**
* Recursive method used by <CODE>createFinalElementList</CODE> to 

determine 
* the final list of elements that are to be
* @param finalElements Current list of all elements that have thus 

far been derived for the group.
* @param elementMatrix ArrayList of ArrayList of String objects where 
*    each String is one of the possible elements derived from one 

generator
*    each ArrayList of Strings is the list of all possible elements 

derived from one generator 
*    and each ArrayList of ArrayList of Strings is the list of all 

possible elements derived from one generator for all the generators
* @param generatorList ArrayList of String objects that are the order 

of each of the generators of the group.
* @param nextElement Current element being built recursively for the 

final element list
* @param count Number of recursive steps that has been run of 

<CODE>fillList</CODE>
* @return The final list of elements thus far derived for the group 

that comprise the group being created in 
<CODE>createDefineRelationGroup</CODE>

*/
private ArrayList<String> fillList(ArrayList<String> finalElements, 

ArrayList<ArrayList<String>> elementMatrix, 
ArrayList<String> generatorList, String 

nextElement, int count)
{
if (count >= generatorList.size())

finalElements.add(nextElement);
else 

{
for (int i=0; i < Integer.parseInt(generatorList.get(count)); 

i++)
{
ArrayList<String> elementRow = elementMatrix.get(count);
nextElement = nextElement + elementRow.get(i);
finalElements = fillList(finalElements, elementMatrix, 

generatorList, nextElement, count+1);
}

}
return finalElements;
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}

/**
* Method to calculate and store the inner automorphism of the 

<CODE>group</CODE> 
 * <CODE>groupMatrix</CODE> object.
* @return Boolean value representing success of updating the 

<CODE>group</CODE> <CODE>groupMatrix</CODE> object.
*/
public boolean createInnerAutGroup()
{
int order = group.getOrder();

ArrayList<groupMatrix> innerGroups = new ArrayList<groupMatrix>();
int innerGroupCount = 0;
int[] groupPosn = new int[order];
for (int g=0; g<order; g++)

{
boolean inList = false;
cayleytable.groupMatrix tempGroup = 

createInnerAutFromElement(g);
if (g!=0)

{
for (int i=0; i<innerGroups.size(); i++)

{
cayleytable.groupMatrix listGroup = 

innerGroups.get(i);
if (listGroup.isEqual(tempGroup)) inList = true;

}
}

if (!inList)
{
groupPosn[innerGroupCount++] = g;
innerGroups.add(tempGroup);

}
}

cayleytable.groupMatrix nextGroup = new 
cayleytable.groupMatrix(innerGroups.size());

for (int row=0; row<innerGroups.size(); row++)
{
for (int col=0; col<innerGroups.size(); col++)

{
cayleytable.groupMatrix tempGroup = 

createInnerAutFromTwoElements(groupPosn[row], groupPosn[col]);
for (int i=0; i<innerGroups.size(); i++)

{
cayleytable.groupMatrix listGroup = 

innerGroups.get(i);
if (listGroup.isEqual(tempGroup))

{
nextGroup.setEntry(row, col, i);

}
}

}
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}

if (nextGroup.checkComplete())
{
group.resetGroup(nextGroup);
return true;

}

return false;
}

/**
* Method to calculate the inner automorphism of for two elements of 
 * the <CODE>group</CODE> <CODE>groupMatrix</CODE> object.  Each cell
* in the group now equals the value of xygy^-1x^-1 where x and y are
* the elements and g is current element in the cell of the group for 
* which the inner automorphism is calculated.
* @param elmtA First integer representing element in group for which 

the inner automorphism is calculated
* @param elmtB Second integer representing element in group for which 

the inner automorphism is calculated
 * @return <CODE>groupMatrix</CODE> object that holds the inner 
automorphism for the <CODE>group</CODE> <CODE>groupMatrix</CODE> object.

*/
public cayleytable.groupMatrix createInnerAutFromTwoElements(int 

elmtA, int elmtB)
{
int order = group.getOrder();
cayleytable.groupMatrix tempGrp = new 

cayleytable.groupMatrix(order);

// Determine the inverse of the element if it exists,
// else return the empty group
int invA = -1;
int invB = -1;
int identity = group.findIdentity();
if (identity == -1) return tempGrp;
for (int i=0; i<order; i++)

{
if (group.getEntry(elmtA, i) == identity)

invA = i;
if (group.getEntry(elmtB, i) == identity)

invB = i;
}

if (invA == -1 || invB == -1) return tempGrp;

// Create the Inner Automorphism for the element
for (int row=0; row < order; row++)

{
for (int col=0; col < order; col++)

{
tempGrp.setEntry(row, col, 

group.getEntry(group.getEntry(elmtA, group.getEntry(group.getEntry(elmtB, 
group.getEntry(row, col)), invB)), invA));

}
}
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return tempGrp;
}
 
 
/**
* Method to calculate the inner automorphism of a single element of 
 * the <CODE>group</CODE> <CODE>groupMatrix</CODE> object.  Each cell
* in the group now equals the value of xgx^-1 where x is the single 
* element and g is current element in the cell of the group for which
* the inner automorphism is calculated.
* @param element Integer representing element in group for which the 

inner automorphism is calculated
 * @return <CODE>groupMatrix</CODE> object that holds the inner 
automorphism group for an element.

*/
public cayleytable.groupMatrix createInnerAutFromElement(int element)
{
int order = group.getOrder();
cayleytable.groupMatrix tempGrp = new 

cayleytable.groupMatrix(order);

// Determine the inverse of the element if it exists,
// else return the empty group
int inverse = -1;
int identity = group.findIdentity();
if (identity == -1) return tempGrp;
for (int i=0; i<order; i++)

{
if (group.getEntry(element, i) == identity)

{
inverse = i;
break;

}
}

if (inverse == -1) return tempGrp;

// Create the Inner Automorphism for the element
for (int row=0; row < order; row++)

{
for (int col=0; col < order; col++)

{
tempGrp.setEntry(row, col, 

group.getEntry(group.getEntry(element, group.getEntry(row, col)), 
inverse));

}
}

return tempGrp;
}

}
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GROUPIDENTIFY.JAVA
/*
* groupIdentify.java
*
* Created on January 16, 2005, 8:00 PM
*/

package cayleytable;

import java.util.*;
/**
* Class used to identify by name the current <CODE>groupMatrix</CODE> 
object that 
* it contains.
* @author Jeffrey Barr
*/
public class groupIdentify {

 
/**
* <CODE>groupMatrix</CODE> object that is to be identified.
*/
private cayleytable.groupMatrix identifyMatrix;
/**
* String object containing name of current <CODE>groupMatrix</CODE> 

object stored
* in the class.
*/
private String name;
/**
* Boolean result of the identification routine
*/
private boolean identified;

/**
* Creates a new instance of <CODE>groupIdentify</CODE> with a 

<CODE>groupMatrix</CODE> object
* of order 0 and no name.
*/
public groupIdentify() {
identifyMatrix = new cayleytable.groupMatrix(0);
String name = new String("emptyGroup");
identified = false;

}

/**
* Method to update the <CODE>identifyMatrix</CODE> 

<CODE>groupMatrix</CODE> object stored in the class as well
* as the method to actually identify the group stored in the 

<CODE>identifyMatrix</CODE> <CODE>groupMatrix</CODE>
* object.
* @param myGroup <CODE>groupMatrix</CODE> object to be identified
*/
public void resetGroupIdentify (cayleytable.groupMatrix myGroup)
{
identifyMatrix.resetGroup(myGroup);
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int order[] = build_order_array();
ArrayList<num_order> orderList = build_num_order_arrayList(order);

showCenterOrders(computeCenter(), order);
if (isCyclic(order)) 
{
name = "Z" + Integer.toString(identifyMatrix.getOrder());
identified = true;

}
else

{
if (isTwoPrime(identifyMatrix.getOrder()))

{
if (identifyMatrix.getOrder() != 4)

name = "D" + 
Integer.toString(identifyMatrix.getOrder() / 2);

else
name = "Klein 4";

identified = true;
}

else if (isPrimeSqrd(identifyMatrix.getOrder()))
{
int root = (int) 

java.lang.Math.round(java.lang.Math.sqrt(identifyMatrix.getOrder()));
name = "Z" + Integer.toString(root) + " x Z" + 

Integer.toString(root);
identified = true;

}
else

{
if (identifyMatrix.checkIfCommutative()) 

name = identifyAbelianXGroup(order, orderList);
else 

name = identifyNonAbelianGroup(order, orderList);
}

 }
System.out.print("Orders: ");
for (int j=0; j<orderList.size(); j++)
{

num_order myOrders = orderList.get(j);
System.out.print("\t" + myOrders.getOrderOfElement() + ": " + 

myOrders.getNumOfElements());
 }

System.out.println();
}

/**
* Method to return name of group stored in 

<CODE>identifyMatrix</CODE> <CODE>groupMatrix</CODE> object
* @return String containing name of the group
*/
public String getName()
{
return name;

}
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/**
* Method to return result of whether the group in 

<CODE>identifyMatrix</CODE> 
* <CODE>groupMatrix</CODE> object could be identified.
* @return boolean result of identification routine.
*/
public boolean isIdentified()
{
return identified;

}

/**
* Method to determine the order of each of the elements in the group.
* @return Array of integers containing order of all elements in the 

group
*/
private int[] build_order_array()

 {
int[] order = new int[identifyMatrix.getOrder()];
int j;

int i = 0;
while (i < identifyMatrix.getOrder())

{
j = i;
order[i] = 1;
do

{
if (j != identifyMatrix.findIdentity()) order[i] = 

order[i] + 1;
j = identifyMatrix.getEntry(i, j);

}
while (j != i);
i = i + 1;  

}

return order;
}

/**
* Method to determine the number of elements in the group of each 

order.
* @param order Array of integers containing order of all elements in 

the group
* @return ArrayList of <CODE>groupIdentify.numOrder</CODE> that 

contains the number of elements of a specific order of the group.
*/
private ArrayList<num_order> build_num_order_arrayList(int[] order)
{
ArrayList<num_order> orderList = new ArrayList<num_order>();
for (int x = 1; x <= identifyMatrix.getOrder(); x++)
{

int count = 0;
for (int y = 0; y < identifyMatrix.getOrder(); y++)
if (order[y] == x) count = count + 1;
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if (count != 0)
{

cayleytable.groupIdentify.num_order next = new 
cayleytable.groupIdentify.num_order(x, count);

orderList.add(next);
}

}

return orderList;
}

/**
* Method to determine if current group is a cyclic group.
* @param order Array of integers containing order of all elements in 

the group
* @return Boolean result of check to determine if the group is 

cyclic.
*/
private boolean isCyclic(int[] order)
{
 for (int i=0; i<identifyMatrix.getOrder(); i++)

{
if (order[i] == identifyMatrix.getOrder())

return true;
}

return false;
}

/**
* Method to determine if a given value is prime
* @param n integer value to check
* @return Boolean result of check for prime
*/
private boolean isPrime(int n)

 {
int divisor = 2;
double  max = java.lang.Math.sqrt(n);

while ((double) divisor <= max) {
if (n % divisor == 0) return false;
divisor = divisor + 1;

}
return true;

}

/**
* Method to determine if a given value is 2*prime

 * @param n integer value to check
* @return Boolean result of check for 2*prime
*/
private boolean isTwoPrime(int n)
{
if (n % 2 == 0) return isPrime(n / 2);
return false;

}
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/**
* Method to determine if a given value is prime^2
* @param n integer value to check
* @return Boolean result of check for prime^2
*/
private boolean isPrimeSqrd(int n)
{
int root = (int) java.lang.Math.round(java.lang.Math.sqrt(n));

if (n == (root*root)) return isPrime(root);

return false;
}

/**
* Method to determine remaining Abelian groups that have not been 

identified
* by the <CODE>isCyclic</CODE>, <CODE>isTwoPrime</CODE>, and 

<CODE>isPrimeSqrd</CODE> methods.
* All remaining Abelian groups are of the cross product form.
* @param order Array of integers containing order of all elements in 

the group
* @param orderList ArrayList of <CODE>groupIdentify.numOrder</CODE> 

that contains the number of elements of a specific order of the group.
* @return String object containing name of the Abelian group
*/
private String identifyAbelianXGroup(int[] order, ArrayList<num_order> 

orderList)
{
int max_order = 0;
int temp;
ArrayList<factorType> factors, tempFactors;
cayleytable.groupIdentify.factorType nextFactor, nextTempFactor;
String name;

for (int i=0; i<identifyMatrix.getOrder(); i++)
if (order[i] > max_order) max_order = order[i];

temp = (int) identifyMatrix.getOrder() / max_order;

factors = primeFactor(temp);
name = new String("");

for (int j=0; j < factors.size(); j++)
{
nextFactor = factors.get(j);
if (nextFactor.getNumOfPrimes() == 1)

name = name + "Z" + 
Integer.toString(nextFactor.getPrime()) + " x ";

else
{
temp = numElementsOfOrder(orderList, 

nextFactor.getPrime()) + 1;
tempFactors = primeFactor(temp);
nextTempFactor = tempFactors.get(j);
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temp = nextTempFactor.getNumOfPrimes() - 1;
name = name + generateUniqueFactor(nextFactor, temp);

}
}

name = name + "Z" + Integer.toString(max_order);
identified = true;
return name;

}

/**
* Method to determine the prime factorization of a given value
* @param n integer value to factor
* @return ArrayList of <CODE>groupIdentify.factorType</CODE> 

containing prime factors and the number of those primes used in the 
factorization

*/
private ArrayList<factorType> primeFactor(int n)
{
ArrayList<factorType> factors = new ArrayList<factorType>();

int i = 2;
while (n > 1)

{
cayleytable.groupIdentify.factorType nextFactor = new 

cayleytable.groupIdentify.factorType(i, 0);
// if ((n % i) == 0) 
// {

while (n % i == 0)
{
nextFactor.incrementNumOfPrimes();
n = n / i;

}
// }

if (nextFactor.getNumOfPrimes() > 0)
factors.add(nextFactor);

i = i + 1;
while (!isPrime(i)) i = i + 1;

 }

return factors;
}

/**
* Method to determine the number of elements in a group of a given 

order.
* @param orderList ArrayList of <CODE>groupIdentify.numOrder</CODE> 

that contains the number of elements of a specific order of the group.
* @param k integer of order to check
* @return integer of numner of elements of the given order
*/
private int numElementsOfOrder(ArrayList<num_order> orderList, int k)
{
cayleytable.groupIdentify.num_order nextOrder;

for (int i=0; i< orderList.size(); i++)
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{
nextOrder = orderList.get(i);
if (nextOrder.getOrderOfElement() == k)

return nextOrder.getNumOfElements();
}

return 0;
}

/**
* Method to generate remaining factors based upon a specific number 

of a prime order 
* and a number or terms those primes should be combined into.
*
* @param nextFactor groupIdentify.factorType containing next prime 

and the number of primes that are to be used
* @param terms integer providing number of terms in the cross product 

to be returned
* @return String object containing elements of the cross product in 

the name of the group
*/
private String 

generateUniqueFactor(cayleytable.groupIdentify.factorType nextFactor, int 
terms)

{
int[] xTermArray = new int[terms];
int index = terms ;
String name = new String("");

for (int i=0; i < terms; i++) xTermArray[i] = 1;

for (int j=0; j < nextFactor.getNumOfPrimes(); j++)
{
index = index - 1;
xTermArray[index] = xTermArray[index] * nextFactor.getPrime();
if (index == 0) index = terms;

}

for (int k=0; k < terms; k++)
name = name + "Z" + Integer.toString(xTermArray[k]) + " x ";

return name;
}    

/**
* Method to determine remaining non-Abelian group names for all 

groups of order less
* than or equal to 32.  Will return error message in String and set 

<CODE>identified</CODE>
* to false if name cannot be determined or order is greater than 32.
* @param order Array of integers containing order of all elements in 

the group
* @param orderList ArrayList of <CODE>groupIdentify.numOrder</CODE> 

that contains the number of elements of a specific order of the group.
* @return String object containing name of the non-Abelian group
*/
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private String identifyNonAbelianGroup(int[] order, 
ArrayList<num_order> orderList)

{
String name = new String("");
identified = true;
switch(identifyMatrix.getOrder())

{
case 8:
if (numElementsOfOrder(orderList, 4) == 6)

name = "Quaternion";
else if (numElementsOfOrder(orderList, 4) == 2)

name = "D4";
else {

identified = false;
name = "ERROR - order 8";

}
break;

case 12:
if (numElementsOfOrder(orderList, 2) == 7)

name = "D6";
else if (numElementsOfOrder(orderList, 3) == 8)

name = "A4";
else if (numElementsOfOrder(orderList, 3) == 2)

name = "<2,2,3>";
else {

identified = false;
name = "ERROR - order 12";

}
break;

case 16:
if (numElementsOfOrder(orderList, 2) == 9)

name = "D8";
else if (numElementsOfOrder(orderList, 2) == 11)

name = "Z2 x D4";
else if (numElementsOfOrder(orderList, 2) == 1)

name = "Q4";
else if (numElementsOfOrder(orderList, 8) == 8)

name = "Z2 xo Z8";
else if (numElementsOfOrder(orderList, 2) == 5)

name = "Z2 xi Z8";
else if (numElementsOfOrder(orderList, 2) == 7)

{
if (centerIsKlein4(computeCenter(), order))

name = "Weird2";
else

name = "Weird1";
}

else if (numElementsOfOrder(orderList, 4) == 12)
{
if (subGroupsAllNormal())

name = "Z2 x Quaternion";
else

name = "Z4 xo Z4";
}

else {
identified = false;
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name = "ERROR - order 16";
}
break;     

case 18:
if ((numElementsOfOrder(orderList, 2) == 9) && 

(numElementsOfOrder(orderList, 3) == 2))
name = "D9";

else if ((numElementsOfOrder(orderList, 2) == 9) && 
(numElementsOfOrder(orderList, 3) == 8))

name = "((3,3,3;2))";
else if (numElementsOfOrder(orderList, 2) == 3)

name = "Z3 x D3";
else {

identified = false;
name = "ERROR - order 18";

}
break;     

case 20:
if (numElementsOfOrder(orderList, 2) == 11)

name = "D10";
else if (numElementsOfOrder(orderList, 2) == 1)

name = "<2,2,5>";
else if (numElementsOfOrder(orderList, 2) == 5)

name = "K-Metacyclic (20)";
else {

identified = false;
name = "ERROR - order 20";

}
break;

case 21:
if (numElementsOfOrder(orderList, 3) == 14)

name = "Z3 xo Z7";
else {

identified = false;
name = "ERROR - order 21";

}
break;

case 24:
if (numElementsOfOrder(orderList, 2) == 13)

name = "D12";
else if ((numElementsOfOrder(orderList, 6) == 8) && 

(numElementsOfOrder(orderList, 2) == 7))
name = "Z2 x A4";

else if (numElementsOfOrder(orderList, 2) == 15)
name = "Z2 x D6";

else if (numElementsOfOrder(orderList, 2) == 5)
name = "Z3 x D4";

else if (numElementsOfOrder(orderList, 12) == 12)
name = "Z3 x Quaternion";

else if (numElementsOfOrder(orderList, 4) == 8)
name = "Z4 x D3";

else if (numElementsOfOrder(orderList, 4) == 12)
name = "Z2 x <2,2,3>";

else if ((numElementsOfOrder(orderList, 2) == 9) && 
(numElementsOfOrder(orderList, 3) == 2))

name = "(4,6|2,2)";
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else if ((numElementsOfOrder(orderList, 2) == 9) && 
(numElementsOfOrder(orderList, 3) == 8))

name = "S4";
else if ((numElementsOfOrder(orderList, 2) == 1) && 

(numElementsOfOrder(orderList, 6) == 8))
name = "<2,3,3>";

else if (numElementsOfOrder(orderList, 4) == 14)
name = "<2,2,6>";

else if (numElementsOfOrder(orderList, 8) == 12)
name = "<-2,2,3>";

else {
identified = false;
name = "ERROR - order 24";

}
break;     

case 27:
if (numElementsOfOrder(orderList, 3) == 26)

name = "(3,3|3,3)";
else if (numElementsOfOrder(orderList, 3) == 8)

name = "Weird 27";
else {

identified = false;
name = "ERROR - order 27";

}
break;

case 28:
if (numElementsOfOrder(orderList, 2) == 15)

name = "D14";
else if (numElementsOfOrder(orderList, 2) == 1)

name = "<2,2,7>";
else {

identified = false;
name = "ERROR - order 28";

}
break;

case 30:
if (numElementsOfOrder(orderList, 2) == 15)

name = "D15";
else if (numElementsOfOrder(orderList, 2) == 5)

name = "Z3 x D5";
else if (numElementsOfOrder(orderList, 2) == 3)

name = "Z5 x D3";
else {

identified = false;
name = "ERROR - order 30";

}
break;

case 32:
showCenterOrders(computeCenter(), order);
if (subGroupsAllNormal()) System.out.println("All 

Normal");
else System.out.println("Not All Normal:");

if (numElementsOfOrder(orderList, 2) == 23)
name = "Z2 x Z2 x D4 - Hall Senior Number 8 for Order 32";

else if (numElementsOfOrder(orderList, 16) == 16)
name = "Z16 xo Z2 - Hall Senior Number 22 for Order 32";
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else if (numElementsOfOrder(orderList, 2) == 19 && 
numElementsOfOrder(orderList, 8) == 8)

name = "Z2 x D8 - Hall Senior Number 23 for Order 32";
else if (numElementsOfOrder(orderList, 8) == 24)

name = "Hall Senior Number 32 for Order 32";
else if (numElementsOfOrder(orderList, 2) == 15 && 

determineInnerAutomorphism().trim().equalsIgnoreCase("Z2 x Z2 x Z2"))
name = "Hall Senior Number 36 for Order 32";

else if (numElementsOfOrder(orderList, 2) == 14)
name = "Hall Senior Number 42 for Order 32";

else if (numElementsOfOrder(orderList, 2) == 15 && 
numElementsOfOrder(orderList, 8) == 8)

name = "Hall Senior Number 44 for Order 32";
else if (numElementsOfOrder(orderList, 2) == 11 && 

numElementsOfOrder(orderList, 4) == 4)
name = "Hall Senior Number 47 for Order 32";
else if (numElementsOfOrder(orderList, 2) == 17)
name = "D16 - Hall Senior Number 49 for Order 32";

else if (numElementsOfOrder(orderList, 2) == 9)
name = "Z16 xi Z2 - Hall Senior Number 50 for Order 32";

else if (numElementsOfOrder(orderList, 4) == 18)
name = "<2, 2, 8> - Hall Senior Number 51 for Order 32";

 
else {

identified = false;
name = "ERROR Unknown group name - order 32";

}
break;

default:
name = "ERROR - order " + 

Integer.toString(identifyMatrix.getOrder());
identified = false;

}
return name;

}

/**
* Method to determine the elements in the group that are the center 

of the group.  The
* center of the group consists of all elements in the group that 

commutes with all of the
* other elements.
*
* @return ArrayList of Integers representing elements that make up 

the center of the group
*/
private ArrayList<Integer> computeCenter()
{
ArrayList<Integer> center_list = new ArrayList<Integer>();

center_list.add(identifyMatrix.findIdentity());;

for (int row = 0; row < identifyMatrix.getOrder(); row++)
 {

if (row == identifyMatrix.findIdentity()) continue;
boolean commutes = true;
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int col = 1;
while (commutes && col < identifyMatrix.getOrder())

{
if (identifyMatrix.getEntry(row, col) != 

identifyMatrix.getEntry(col, row))
commutes = false;
col++;

}
if (commutes)

{
center_list.add(new Integer(row));
System.out.println("Center contains: " + row);

}
 

}
return center_list;

}

/**
* Method to determine if the center elements in the group correspond 

to the Klein-4 group.
*
* @param center_list ArrayList of Integers representing elements that 

make up the center of the group
* @param order Array of integers containing order of all elements in 

the group
* @return Boolean result of check if center is Klein-4 group
*/
private boolean centerIsKlein4(ArrayList<Integer> center_list, int[] 

order)
{

// Klein-4 group is of order four so must be only four elements in 
the center

if (center_list.size() != 4) return false;
Integer element;
int count = 1;
while (count <= 3)

{
element = (Integer) center_list.get(count);
if (order[element.intValue()] != 2)

return false;
count = count + 1;

}
return true;

}

/**
* Method to determine  center elements in the group and their order.
*
* @param center_list ArrayList of Integers representing elements that 

make up the center of the group
* @param order Array of integers containing order of all elements in 

the group
*/
private void showCenterOrders(ArrayList<Integer> center_list, int[] 

order)
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{
//if (center_list.size() != 4) return false;

Integer element;
 System.out.print("Center: ");

for (int count = 0; count < center_list.size(); count++)
{
element = (Integer) center_list.get(count);

System.out.print("\telmt " + element + ": " + 
order[element.intValue()]);

}
System.out.println();

}

/**
* Method to determine if all subgroups of the group are normal.
*
* @return Boolean result of check if all subgroups are normal
*/
private boolean subGroupsAllNormal()
{
for (int i=0; i < identifyMatrix.getOrder(); i++)

{
ArrayList<Integer> sgList = generateSubGroupList(i);

if (!normal(sgList)) return false;
}

return true;
}

/**
* Method to determine the elements in a subgroup that include a 

specific element.
*
* @param element integer of element contained in subgroup
* @return ArrayList of Integers representing elements that make up 

the center of the group
*/
public ArrayList<Integer> generateSubGroupList(int element)
{
ArrayList<Integer> subGroupList = new ArrayList<Integer>();
subGroupList.add(identifyMatrix.findIdentity());;

int temp = element;
while (temp != identifyMatrix.findIdentity())

{
subGroupList.add(new Integer(temp));

temp = identifyMatrix.getEntry(temp, element);
}

return subGroupList;
}

/**
* Method to determine if the elements in a subgroup make up a normal 

subgroup.  A normal
* subgroup is a group where the subgroup is commutative with all of 

the elements in the
* original group.
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*
* @param subGroupList ArrayList of Integers representing elements 

that make up the center of the group
* @return Boolean result of check if subgroup are normal
*/
private boolean normal(ArrayList<Integer> subGroupList)
{
for (int i=0; i < identifyMatrix.getOrder(); i++)

{
 ArrayList<Integer> tempSet = new ArrayList<Integer>();
 int inverse = identifyMatrix.findInverse(i);

for (int j=0; j < subGroupList.size(); j++)
{
Integer tempCol = subGroupList.get(j);
int tempRow = identifyMatrix.getEntry(i, 

tempCol.intValue());
tempSet.add(new Integer(identifyMatrix.getEntry(tempRow, 

inverse)));
}
 

for (int k=0; k < subGroupList.size(); k++)
{

 boolean inSet = false;
for (int t=0; t<tempSet.size(); t++)

if (tempSet.get(t).intValue() == 
subGroupList.get(k).intValue()) inSet = true;

if (!inSet) return false;                            
}

}

return true;
}

/**
* Method to determine the inner automorphism of the group being 

identified.
*
* @return String Name of inner automorphism
*/
private String determineInnerAutomorphism()
{

groupCreator localCreator = new groupCreator();
localCreator.resetGroup(identifyMatrix);
if (localCreator.createInnerAutGroup())
{

groupIdentify innerAutName = new groupIdentify();
 innerAutName.resetGroupIdentify(localCreator.getGroup());

if (innerAutName.isIdentified())
return innerAutName.getName();

}
return null;

}

/**
* Class used to store element orders and the number of elements of 

that order
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*/
private class num_order 
{
/**
* integer order of elements to be stored
*/
private int orderOfElement;
/**
* integer number of elements that have the associated order
*/
private int numOfElements;

/**
* Constructor for the class that saves an order value and number of 

values of that order
* @param order integer order to be stored
* @param num integer number of elements of order to be stored
*/
public num_order(int order, int num)
{
 orderOfElement = order;
numOfElements = num;

}

/**
* Returns the order
* @return integer value of the order
*/
public int getOrderOfElement()
{

return orderOfElement;
}

/**
* Returns the number of elements
* @return integer value of the number of elements
*/
public int getNumOfElements()
{

return numOfElements;
}

}

/**
* Class to store a prime and number used of a prime factorization
*/
private class factorType 
{
/**
* Prime from the prime factorization
*/
private int prime;
/**
* Number of primes used in the prime factorization
*/
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private int numOfPrimes;

/**
* Constructor for the class that saves a prime and number of values 

of that prime used in the prime factorization
* @param p integer value of the prime
* @param num integer value of the number of primes in the 

factorization
*/
public factorType(int p, int num)
{

prime = p;
numOfPrimes = num;

}

/**
* Returns the prime
* @return integer value of the prime
*/
public int getPrime()
{

return prime;
}

/**
* Returns the number of times the prime is used in the prime 

factorization
* @return integer value of the number of times the prime is used
*/
public int getNumOfPrimes()
{

return numOfPrimes;
}

/**
* Increments the value of <CODE>numOfPrimes</CODE> by 1
*/
public void incrementNumOfPrimes()
{

numOfPrimes = numOfPrimes + 1;
}

}

}

GROUPPERMUTATION.JAVA
/*
* groupPermutation.java
*
* Created on February 6, 2005, 10:29 PM
*/
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package cayleytable;

import java.util.*;
/**
* Class used to determine the number of permutations of a particular 
order 
* that form a legal group where the identity element is always 0.  
*
* @author Jeffrey Barr
*/
public class groupPermutation {

 
int groupCount;
private cayleytable.groupIdentify groupNamer;
private cayleytable.groupMatrix myGroup;
 
/** Creates a new instance of groupPermutation */
public groupPermutation() {

 
System.out.println("Determine all of the permutations that are 

groups for order n");
System.out.println("There are a total of n!^n permutations");
int n = 7;
myGroup = new cayleytable.groupMatrix(n);
groupNamer = new cayleytable.groupIdentify();
groupCount = 0; 
 
ArrayList<PermutationGenerator> myPermGens = new 

ArrayList<PermutationGenerator>();
for (int i=0; i<n; i++) 
{

PermutationGenerator myPermGen = new PermutationGenerator(n);
myPermGens.add(myPermGen);

}
 
long total = (long) java.lang.Math.pow(factorial(n-1), n-1);
System.out.println("Total = " + total + " possibilities");
determinePermutationAndSolve(myPermGens, n);

 
System.out.println("Group Count = " + groupCount + " out of " + 

total + " possibilities");
}
 
private void 

determinePermutationAndSolve(ArrayList<PermutationGenerator> myPermGens, 
int n)

{
 
if (n==myGroup.getOrder())
{

for (int i=0; i<myGroup.getOrder(); i++)
myGroup.setEntry(0, i, i);

determinePermutationAndSolve(myPermGens, n-1);
return;

}
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PermutationGenerator myPG = myPermGens.get(n-1);
while (myPG.hasMore())
{

int[] indices = myPG.getNext();
if (indices[0] < myGroup.getOrder()-n) 

continue;
if (indices[0] > myGroup.getOrder()-n) 

break;

for (int i=0; i<indices.length; i++)
myGroup.setEntry(myGroup.getOrder()-n, i, indices[i]);

if (repetitionCheck(myGroup.getOrder()-n)) continue;
if (n-1 > 0) determinePermutationAndSolve(myPermGens, n-1);
else
{

if (myGroup.checkForIdentity() && 
myGroup.checkForInverse() &&
myGroup.checkIfAssociative())

{
groupCount++;

 groupNamer.resetGroupIdentify(myGroup);
System.out.println("Found Group " + groupCount + ": " 

+ groupNamer.getName());
for (int row=0; row<myGroup.getOrder(); row++)
{
 for (int col=0; col<myGroup.getOrder(); col++)

{
System.out.print("\t" + myGroup.getEntry(row, 

col));
}
System.out.println();

}
 }

}
}
 
myPG.reset();
 

}
 
private boolean repetitionCheck(int currentRow)
{

int totalRows = myGroup.getOrder();
if (currentRow == 0) return false;
//if (myGroup.getEntry(currentRow, 0) != currentRow) return true;
for (int col=0; col<totalRows; col++)
{

for(int row=0; row<currentRow-1; row++)
if (myGroup.getEntry(row, col) == 

myGroup.getEntry(currentRow,col)) return true;
}
return false;

}
 
private int factorial(int n)
{
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if (n <= 0) return 1;
else return n * factorial(n-1);

}

public static void main(String[] args) {
// TODO code application logic here
groupPermutation gp = new groupPermutation();

}

}

PERMUTATIONGENERATOR.JAVA
/*
* PermutationGenerator.java
*
* Source Code taken from http://www.merriampark.com/perm.htm
* Created on February 4, 2005, 4:15 PM
*/

package cayleytable;
import java.math.BigInteger;
/**
* Class used to create permutations of a set of numbers from 0 to n-1
* @author {@link http://www.merriampark.com/perm.htm}
*/
public class PermutationGenerator {

 
/**
* array of integers representing current permutation that is being sent 

back to requestor
*/
private int[] a;
/**
* BigInteger of the number of permutations that have not been retrieved
*/
private BigInteger numLeft;
/**
* BigInteger of the total number of permutations
*/
private BigInteger total;

 
/**
* Constructor to create the initial permutation of the list of integers 

from
* 0 to a given number.
* WARNING: Don't make n too large.
* Recall that the number of permutations is n!
* which can be very large, even when n is as small as 20 --
* 20! = 2,432,902,008,176,640,000 and
* 21! is too big to fit into a Java long, which is
* why we use BigInteger instead.
* 
* @param n integer size of the array to permutate
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*/
public PermutationGenerator (int n) {
if (n < 1) {
throw new IllegalArgumentException ("Min 1");

}
a = new int[n];
total = getFactorial (n);
reset ();

}

/**
* Method to reset the permutation list to the original array
*
*/
public void reset () {
for (int i = 0; i < a.length; i++) {
a[i] = i;

}
numLeft = new BigInteger (total.toString ());

}

/**
* Method to return number of permutations not yet generated
*
* @return BigInteger value of the number of permutations left
*/
public BigInteger getNumLeft () {
return numLeft;

}

 
/**
* Method to return total number of permutations
*
* @return BigInteger value of the total number of permutations
*/
public BigInteger getTotal () {
return total;

}

/**
* Method to return whether any more permutations are left to use
* @return Boolean value determining if <CODE>numLeft</CODE> is greater 

than zero
*/
public boolean hasMore () {
return numLeft.compareTo (BigInteger.ZERO) == 1;

}

/**
* Method to compute the factorial of a given integer
*
* @param n integer to which compute the factorial
* @return BigInteger factorial of the given value
*/
private static BigInteger getFactorial (int n) {
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BigInteger fact = BigInteger.ONE;
 for (int i = n; i > 1; i--) {

fact = fact.multiply (new BigInteger (Integer.toString (i)));
}
return fact;

}

/**
* Method to generate next permutation (algorithm from Rosen p. 284)
*
* @return integer array containing next permutation of list of integers 

from 0 to n-1
*/

public int[] getNext () {

if (numLeft.equals (total)) {
numLeft = numLeft.subtract (BigInteger.ONE);
return a;

}

int temp;

// Find largest index j with a[j] < a[j+1]

int j = a.length - 2;
while (a[j] > a[j+1]) {
j--;

}

// Find index k such that a[k] is smallest integer
// greater than a[j] to the right of a[j]

int k = a.length - 1;
while (a[j] > a[k]) {
k--;

}

// Interchange a[j] and a[k]

temp = a[k];
a[k] = a[j];
a[j] = temp;

// Put tail end of permutation after jth position in increasing order

int r = a.length - 1;
int s = j + 1;

while (r > s) {
temp = a[s];
a[s] = a[r];
a[r] = temp;
r--;
s++;

}
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numLeft = numLeft.subtract (BigInteger.ONE);
return a;

}
}
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This thesis describes the refinement and extension of code that was originally developed 
as part of a 1987 Math 797 project by David Gibbs, “Computer Generation and Identification of 
Groups of Order 2 to 31.” The purpose of the code was to generate, identify, and analyze groups 
presented in the form of a Cayley Table.  Gibbs’ code was transferred from Pascal to Java.  
Objects were created to improve the code design and allow for better interaction between the 
generation, identification, analysis, and visualization sections of code. 

The code for this thesis allows cyclic groups to easily be generated, along with groups 
created via defined relationships and the cross product of multiple groups.  A user interface was 
added to the system to assist the user when utilizing the code as well as visualizing the groups 
that are generated.  Functionality to allow a user to manually enter a Cayley Table for analysis 
was also added to the system.  

The generation code is no longer limited to groups of order less than 31.  Improvements 
were made to the identification code so that the system can identify all Abelian groups including 
those created via the cross product of groups.  Additionally, many non-Abelian groups of order 
32 were added to the list of groups which could be identified.

Analysis functionality was added including the identification of whether a table actually 
represents a group as well as if the group is Abelian.  Also, functionality was added to calculate 
the inner automorphism group of the group being displayed.  The analysis functionality will 
provide users the ability to analyze groups that the code cannot yet identify.


